Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 66(3): 477-491, 2018 03.
Article in English | MEDLINE | ID: mdl-29120073

ABSTRACT

Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (VNT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p < 0.001), as well as a -9% ± 1% decrease of the ratio of phosphocreatine-to-creatine (p < 0.05). Then 13 C MRS during [1,6-13 C]glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of VNT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p < 0.001) and in astrocytes by 24% ( VTCAg, p = 0.007). We further observed linear relationships between VNT and both VTCAn and VTCAg. Altogether, these results suggest that in the tree shrew primary visual cortex glutamatergic neurotransmission is linked to overall glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes.


Subject(s)
Astrocytes/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Neurons/metabolism , Visual Cortex/metabolism , Animals , Brain Mapping , Carbon-13 Magnetic Resonance Spectroscopy , Citric Acid Cycle/physiology , Female , Glucose/metabolism , Magnetic Resonance Imaging , Male , Mitochondria/metabolism , Oxidation-Reduction , Oxygen/metabolism , Proton Magnetic Resonance Spectroscopy , Random Allocation , Tupaiidae , Visual Cortex/diagnostic imaging , Visual Perception/physiology
2.
PLoS One ; 9(2): e89742, 2014.
Article in English | MEDLINE | ID: mdl-24587003

ABSTRACT

Endometriosis, a leading cause of pelvic pain and infertility, is characterized by ectopic growth of endometrial-like tissue and affects approximately 176 million women worldwide. The pathophysiology involves inflammatory and angiogenic mediators as well as estrogen-mediated signaling and novel, improved therapeutics targeting these pathways are necessary. The aim of this study was to investigate mechanisms leading to the establishment and progression of endometriosis as well as the effect of local treatment with Lipoxin A4 (LXA4), an anti-inflammatory and pro-resolving lipid mediator that we have recently characterized as an estrogen receptor agonist. LXA4 treatment significantly reduced endometriotic lesion size and downregulated the pro-inflammatory cytokines IL-1ß and IL-6, as well as the angiogenic factor VEGF. LXA4 also inhibited COX-2 expression in both endometriotic lesions and peritoneal fluid cells, resulting in attenuated peritoneal fluid Prostaglandin E2 (PGE2) levels. Besides its anti-inflammatory effects, LXA4 differentially regulated the expression and activity of the matrix remodeling enzyme matrix metalloproteinase (MMP)-9 as well as modulating transforming growth factor (TGF)-ß isoform expression within endometriotic lesions and in peritoneal fluid cells. We also report for first time that LXA4 attenuated aromatase expression, estrogen signaling and estrogen-regulated genes implicated in cellular proliferation in a mouse model of disease. These effects were observed both when LXA4 was administered prior to disease induction and during established disease. Collectively, our findings highlight potential targets for the treatment of endometriosis and suggest a pleotropic effect of LXA4 on disease progression, by attenuating pro-inflammatory and angiogenic mediators, matrix remodeling enzymes, estrogen metabolism and signaling, as well as downstream proliferative pathways.


Subject(s)
Biosynthetic Pathways/drug effects , Dinoprostone/biosynthesis , Endometriosis/prevention & control , Estrogens/metabolism , Lipoxins/pharmacology , Signal Transduction/drug effects , Analysis of Variance , Animals , Aromatase/metabolism , Cyclooxygenase 2/metabolism , DNA Primers/genetics , Endometriosis/physiopathology , Female , Immunohistochemistry , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...