Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 169(1): 99-109, 2020 May.
Article in English | MEDLINE | ID: mdl-31828797

ABSTRACT

The mechanism of phytotoxicity of citral was probed in Arabidopsis thaliana using RNA-Seq and in silico binding analyses. Inhibition of growth by 50% by citral downregulated transcription of 9156 and 5541 genes in roots and shoots, respectively, after 1 h. Only 56 and 62 genes in roots and shoots, respectively, were upregulated. In the shoots, the downregulation increased at 3 h (6239 genes downregulated, vs 66 upregulated). Of all genes affected in roots at 1 h (time of greatest effect), 7.69% of affected genes were for nucleic acid binding functions. Genes for single strand DNA binding proteins (SSBP) WHY1, WHY 2 and WHY3 were strongly downregulated in the shoot up until 12 h after citral exposure. Effects were strong in the root at just 1 h after the treatment and then at 12 and 24 h. Similar effects occurred with the transcription factors MYC-2, ANAC and SCR-SHR, which were also significantly downregulated for the first hour of treatment, and downregulation occurred again after 12 and 24 h treatment. Downregulation of ANAC in the first hour of treatment was significantly (P < 0.0001) decreased more than eight times compared to the control. In silico molecular docking analysis suggests binding of citral isomers to the SSBPs WHY1, WHY2, and WHY3, as well as with other transcription factors such as MYC-2, ANAC and SCR-SHR. Such effects could account for the profound and unusual effects of citral on downregulation of gene transcription.


Subject(s)
Acyclic Monoterpenes/pharmacology , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis/drug effects , DNA-Binding Proteins/antagonists & inhibitors , Transcriptome , Arabidopsis/genetics , Gene Expression Regulation, Plant , Molecular Docking Simulation , Plant Roots/drug effects , Plant Roots/genetics , RNA-Seq
2.
Toxicol Sci ; 146(2): 395-411, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26001963

ABSTRACT

Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene expression. Herein, we performed a genome-wide transcriptional analysis and discovered differential gene expression and splicing in developing zebrafish. Adult zebrafish were exposed to control or 42.0 ± 1.9 µg/l BaP for 7 days. Eggs were collected and raised in control conditions or continuously exposed to BaP until 3.3 and 96 h post-fertilization (hpf). RNA sequencing (RNA-Seq) was conducted on zebrafish embryos and larvae. Data were analyzed to identify differentially expressed (DE) genes (changed at the gene or transcript variant level) and genes with differential exon usage (DEU; changed at the exon level). At 3.3 hpf, BaP exposure resulted in 8 DE genes and 51 DEU genes. At 96 hpf, BaP exposure altered expression in 1153 DE genes and 159 DEU genes. Functional ontology analysis by Ingenuity Pathway Analysis revealed that many disease pathways, including organismal death, growth failure, abnormal morphology of embryonic tissue, congenital heart disease, and adverse neuritogenesis, were significantly enriched for the DE and DEU genes, providing novel insights on the mechanisms of action of BaP-induced developmental toxicities. Collectively, we discovered substantial transcriptomic changes at the gene, transcript variant, and exon levels in developing zebrafish after early life BaP waterborne exposure, and these changes may lead to long-term adverse physiological consequences.


Subject(s)
Benzo(a)pyrene/toxicity , Larva/drug effects , Transcriptome , Zebrafish/embryology , Animals , Exons , Larva/genetics , Sequence Analysis, RNA , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...