Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30904682

ABSTRACT

Rainbow trout are considered glucose intolerant because they are poor utilizers of glucose, despite having functional insulin receptors and glucose transporters. Following high carbohydrate meals, rainbow trout are persistently hyperglycemic, which is likely due to low glucose utilization in peripheral tissues including the muscle. Also, rainbow trout myogenic precursor cells (MPCs) treated in vitro with insulin and IGF1 increase glucose uptake and protein synthesis, whereas protein degradation is decreased. Given our understanding of glucose regulation in trout, we sought to understand how glucose concentrations affect protein synthesis, protein degradation; and expression of genes associated with muscle growth and proteolysis in MPCs. We found that following 24 h and 48 h of treatment with low glucose media (5.6 mM), myoblasts had significant decreases in protein synthesis. Also, low glucose treatments affected the expression of both mstn2a and igfbp5. These findings support that glucose is a direct regulator of protein synthesis and growth-related mechanisms in rainbow trout muscle.


Subject(s)
Fish Proteins/metabolism , Glucose/metabolism , Muscles/metabolism , Animals , Cell Differentiation , Cell Division , Female , Fish Proteins/genetics , Muscles/cytology , Oncorhynchus mykiss
2.
Article in English | MEDLINE | ID: mdl-29100953

ABSTRACT

Lean muscle mass plays an important role in overall health, as altered skeletal muscle metabolism can impact both the incidence and prevention of conditions related to metabolic health. Intriguingly, dietary methionine restriction (MR) has been shown to ameliorate this phenotype over time potentially through mechanisms related to changes in myogenic precursor cell (MPC) differentiation status. Recently the role of micro-RNAs (miRs) in regulating the expression of muscle specific transcription factors myoD and myogenin as well as signaling molecules involved in skeletal muscle differentiation has been reported in vitro. We performed an 8week feeding trial to determine if MR in vivo could alter miR abundance as well as change metabolic markers. Results show changes in muscle miR abundance for miR-133a at 4weeks with no significant difference seen in miR-210 or miR-206. After 8weeks of MR feeding fish demonstrated increased clearance of glucose, increased fat accumulation in the liver, and decreased fat accumulation in the muscle. These data demonstrate conservation of MR effects on fish metabolism, and suggest, for the first time, that miR-133a might play a role in tissue response to MR.


Subject(s)
Animal Feed , Blood Glucose/metabolism , Diet , Lipid Metabolism , Methionine/deficiency , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Oncorhynchus mykiss/metabolism , Adaptation, Physiological , Adiposity , Animals , Female , Liver/metabolism , MicroRNAs/genetics , Oncorhynchus mykiss/blood , Oncorhynchus mykiss/genetics , Time Factors
3.
Domest Anim Endocrinol ; 56: 1-12, 2016 07.
Article in English | MEDLINE | ID: mdl-26905215

ABSTRACT

The contribution of sex steroids to nutrient partitioning and energy balance during gonad development was studied in rainbow trout. Specifically, 19-mo old triploid (3N) female rainbow trout were fed treatment diets supplemented with estradiol-17ß (E2), testosterone (T), or dihydrotestosterone at 30-mg steroid/kg diet for a 1-mo period. Growth performance, nutrient partitioning, and expression of genes central to growth and nutrient metabolism were compared with 3N and age-matched diploid (2N) female fish consuming a control diet not supplemented with steroids. Only 2 N fish exhibited active gonad development, with gonad weights increasing from 3.7% to 5.5% of body weight throughout the study, whereas gonad weights in 3N fish remained at 0.03%. Triploid fish consuming dihydrotestosterone exhibited faster specific growth rates than 3N-controls (P < 0.05). Consumption of E2 in 3N fish reduced fillet growth and caused lower fillet yield compared with all other treatment groups (P < 0.05). In contrast, viscera fat gain was not affected by steroid consumption (P > 0.05). Gene transcripts associated with physiological pathways were identified in maturing 2N and E2-treated 3N fish that differed in abundance from 3N-control fish (P < 0.05). In liver these mechanisms included the growth hormone/insulin-like growth factor (IGF) axis (igf1, igf2), IGF binding proteins (igfbp1b1, igfbp2b1, igfbp5b1, igfbp6b1), and genes associated with lipid binding and transport (fabp3, fabp4, lpl, cd36), fatty acid oxidation (cpt1a), and the pparg transcription factor. In muscle, these mechanisms included reductions in myogenic gene expression (fst, myog) and the proteolysis-related gene, cathepsin-L, suggesting an E2-induced reduction in the capacity for muscle growth. These findings suggest that increased E2 signaling in the sexually maturing female rainbow trout alters physiological pathways in liver, particularly those related to IGF signaling and lipid metabolism, to partition nutrients away from muscle growth toward support of maturation-related processes. In contrast, the mobilization of viscera lipid stores appear to be mediated less by E2 and more by energy demands associated with gonad development. These findings improve the understanding of how steroids regulate nutrient metabolism to meet the high energy demands associated with gonad development during sexual maturation.


Subject(s)
Animal Nutritional Physiological Phenomena/drug effects , Animal Nutritional Physiological Phenomena/genetics , Gonadal Steroid Hormones/pharmacology , Oncorhynchus mykiss/growth & development , Oncorhynchus mykiss/metabolism , Triploidy , Animals , Diet , Dihydrotestosterone/administration & dosage , Dihydrotestosterone/blood , Estradiol/administration & dosage , Estradiol/blood , Female , Gene Expression/drug effects , Insulin-Like Growth Factor I/analysis , Muscles/metabolism , Oncorhynchus mykiss/genetics , Ovary/growth & development , Testosterone/administration & dosage , Testosterone/blood , Weight Gain
4.
Poult Sci ; 92(10): 2705-12, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24046418

ABSTRACT

Lysine is frequently a first- or second-limiting amino acid in poultry diets. Improving the efficiency of lysine use for protein synthesis would effectively lower the lysine requirement and decrease feed costs. Understanding how lysine is degraded and how the degradation is regulated would identify potential molecular targets for interventions to decrease lysine degradation. To better understand lysine degradation in poultry, 3 experiments were conducted. In experiment 1, one-day-old chicks were fed 1.07, 1.25, 1.73, or 3.28% dietary lysine for 2 wk. In experiments 2 and 3, fourteen-day-old chicks were fed 1.07 or 1.25% dietary lysine for 2 wk. Measures of liver lysine catabolism including lysine α-ketoglutarate reductase (LKR) and lysine oxidation (LOX) were assessed. The α-aminoadipate δ-semialdehyde synthase (AASS) is a bifunctional enzyme composed of both LKR and saccharopine dehydrogenase activities, and the relative abundance of this protein and mRNA were likewise assessed. Moreover, potential alternative pathways of lysine catabolism that depend on l-amino acid oxidase (AAOX) and on lysyl oxidase (LYLOX) were considered. In experiment 1, chicks fed lysine-deficient diets had decreased (P < 0.05) LKR activities compared with chicks fed at or above the requirement. However, the lowered LKR activities were not associated with a decreased (P > 0.05) LOX as measured in vitro. In experiments 2 and 3, chicks 28 d of age did not decrease LKR activity (P > 0.05) in response to a lysine-deficient diet. No changes in AASS protein abundance or mRNA were detected. Likewise, no differences in the mRNA abundances of AAOX or LYLOX were detected. The activity of AAOX did increase (P < 0.05) in birds fed a lysine-adequate diets compared with those fed a lysine-deficient diet. Based on kinetic parameters and assumed concentrations, AAOX could account for about 20% of liver lysine oxidation in avians.


Subject(s)
Chickens/physiology , Liver/metabolism , Lysine/metabolism , Aminocaproates/metabolism , Animal Feed , Animals , Blotting, Western/veterinary , Carbazoles/metabolism , Chickens/growth & development , Diet/veterinary , Dose-Response Relationship, Drug , L-Amino Acid Oxidase/genetics , L-Amino Acid Oxidase/metabolism , Liver/enzymology , Lysine/administration & dosage , Lysine/deficiency , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction/veterinary , Saccharopine Dehydrogenases/genetics , Saccharopine Dehydrogenases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...