Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 8(19)2023 10 09.
Article in English | MEDLINE | ID: mdl-37672481

ABSTRACT

Eosinophilic esophagitis (EoE) is an esophageal immune-mediated disease characterized by eosinophilic inflammation and epithelial remodeling, including basal cell hyperplasia (BCH). Although BCH is known to correlate with disease severity and with persistent symptoms in patients in histological remission, the molecular processes driving BCH remain poorly defined. Here, we demonstrate that BCH is predominantly characterized by an expansion of nonproliferative suprabasal cells that are still committed to early differentiation. Furthermore, we discovered that suprabasal and superficial esophageal epithelial cells retain progenitor identity programs in EoE, evidenced by increased quiescent cell identity scoring and the enrichment of signaling pathways regulating stem cell pluripotency. Enrichment and trajectory analyses identified SOX2 and KLF5 as potential drivers of the increased quiescent identity and epithelial remodeling observed in EoE. Notably, these alterations were not observed in gastroesophageal reflux disease. These findings provide additional insights into the differentiation process in EoE and highlight the distinct characteristics of suprabasal and superficial esophageal epithelial cells in the disease.


Subject(s)
Eosinophilic Esophagitis , Humans , Eosinophilic Esophagitis/pathology , Hyperplasia/pathology , Epithelial Cells/metabolism
2.
bioRxiv ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37131652

ABSTRACT

Eosinophilic esophagitis (EoE) is an esophageal immune-mediated disease characterized by eosinophilic inflammation and epithelial remodeling, including basal cell hyperplasia (BCH) and loss of differentiation. Although BCH correlates with disease severity and with persistent symptoms in patients in histological remission, the molecular processes driving BCH remain poorly defined. Here, we demonstrate that despite the presence of BCH in all EoE patients examined, no increase in basal cell proportion was observed by scRNA-seq. Instead, EoE patients exhibited a reduced pool of KRT15+ COL17A1+ quiescent cells, a modest increase in KI67+ dividing epibasal cells, a substantial increase in KRT13+ IVL+ suprabasal cells, and a loss of differentiated identity in superficial cells. Suprabasal and superficial cell populations demonstrated increased quiescent cell identity scoring in EoE with the enrichment of signaling pathways regulating pluripotency of stem cells. However, this was not paired with increased proliferation. Enrichment and trajectory analyses identified SOX2 and KLF5 as potential drivers of the increased quiescent identity and epithelial remodeling observed in EoE. Notably, these findings were not observed in GERD. Thus, our study demonstrates that BCH in EoE results from an expansion of non-proliferative cells that retain stem-like transcriptional programs while remaining committed to early differentiation.

3.
Nat Commun ; 13(1): 2167, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35443762

ABSTRACT

Although morphologic progression coupled with expression of specific molecular markers has been characterized along the esophageal squamous differentiation gradient, the molecular heterogeneity within cell types along this trajectory has yet to be classified at the single cell level. To address this knowledge gap, we perform single cell RNA-sequencing of 44,679 murine esophageal epithelial, to identify 11 distinct cell populations as well as pathways alterations along the basal-superficial axis and in each individual population. We evaluate the impact of aging upon esophageal epithelial cell populations and demonstrate age-associated mitochondrial dysfunction. We compare single cell transcriptomic profiles in 3D murine organoids and human esophageal biopsies with that of murine esophageal epithelium. Finally, we employ pseudotemporal trajectory analysis to develop a working model of cell fate determination in murine esophageal epithelium. These studies provide comprehensive molecular perspective on the cellular heterogeneity of murine esophageal epithelium in the context of homeostasis and aging.


Subject(s)
Esophageal Neoplasms , Transcriptome , Animals , Epithelial Cells , Epithelium/metabolism , Esophageal Neoplasms/pathology , Esophagus/pathology , Humans , Mice , Single-Cell Analysis , Transcriptome/genetics
4.
Prostaglandins Other Lipid Mediat ; 113-115: 62-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25263346

ABSTRACT

Prostaglandin E2 (PGE2) is elevated during cardiac injury and we have previously shown that mice lacking the PGE2 EP4 receptor display dilated cardiomyopathy (DCM) with increased expression of the membrane type matrix metalloproteinase, MMP-14. We thus hypothesized that PGE2 regulates expression of MMP-14 and also affects fibroblast migration. Primary cultures of neonatal rat ventricular fibroblasts (NVFs) were used to test the effects of PGE2. Gene and protein expression was assessed by real time RT-PCR and Western blot, MMP activity was determined by zymography and migration of NVF was assessed by motility in a transwell system. PGE2 reduced expression of MMP-14 and these effects were antagonized by an EP4 antagonist. An EP4 agonist mimicked the effect of PGE2. PGE2 also increased mRNA and protein levels of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of MMP activation. However, PGE2-stimulation of PAI-1 was mediated by the EP1/EP3 receptor and not EP4. Migration of NVF was assessed by motility in a transwell system. Treatment of NVFs with PGE2 reduced the number of cells migrating toward 10% FCS. Treatment with the EP2 agonist also reduced migration but did not affect MMP-14 expression or PAI-1. Our results suggest that PGE2 utilizes different receptors and mechanisms to ultimately decrease MMP expression and NVF migration.


Subject(s)
Cardiomyopathies/metabolism , Dinoprostone/metabolism , Gene Expression Regulation/physiology , Matrix Metalloproteinase 14/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Alprostadil/analogs & derivatives , Alprostadil/pharmacology , Animals , Animals, Newborn , Cardiomyopathies/enzymology , Cell Movement/physiology , Dinoprostone/analogs & derivatives , Dinoprostone/pharmacology , Fibroblasts/enzymology , Fibroblasts/metabolism , Male , Matrix Metalloproteinase 14/genetics , Methyl Ethers/pharmacology , Naphthalenes/pharmacology , Phenylbutyrates/pharmacology , Plasminogen Activator Inhibitor 1/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...