Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
PLoS One ; 19(4): e0302214, 2024.
Article in English | MEDLINE | ID: mdl-38669263

ABSTRACT

OBJECTIVE: Our aim was to determine the number and size parameters of EDB motor units in healthy young adults using MScanFit, a novel approach to motor unit number estimation (MUNE). Since variability in MUNE is related to compound muscle action potential (CMAP) size, we employed a procedure to document the optimal EDB electromyographic (EMG) electrode position prior to recording MUNE, a neglected practice in MUNE. METHODS: Subjects were 21 adults 21-44 y. Maximum CMAPs were recorded from 9 sites in a 4 cm2 region centered over the EDB and the site with the largest amplitude was used in the MUNE experiment. For MUNE, the peroneal nerve was stimulated at the fibular head to produce a detailed EDB stimulus-response curve or "MScan". Motor unit number and size parameters underlying the MScan were simulated using the MScanFit mathematical model. RESULTS: In 19 persons, the optimal recording site was superior, superior and proximal, or superior and distal to the EDB mid-belly, whereas in 3 persons it was proximal to the mid-belly. Ranges of key MScanFit parameters were as follows: maximum CMAP amplitude (3.1-8.5 mV), mean SMUP amplitude (34.4-106.7 µV), mean normalized SMUP amplitude (%CMAP max, 0.95-2.3%), largest SMUP amplitude (82.7-348 µV), and MUNE (43-103). MUNE was not related to maximum CMAP amplitude (R2 = 0.09), but was related to mean SMUP amplitude (R2 = -0.19, P = 0.05). CONCLUSION: The EDB CMAP was highly sensitive to electrode position, and the optimal position differed between subjects. Individual differences in EDB MUNE were not related to CMAP amplitude. Inter-subject variability of EDB MUNE (coefficient of variation) was much less than previously reported, possibly explained by better optimization of the EMG electrode and the unique approach of MScanFit MUNE.


Subject(s)
Action Potentials , Electromyography , Motor Neurons , Muscle, Skeletal , Humans , Adult , Male , Female , Muscle, Skeletal/physiology , Motor Neurons/physiology , Action Potentials/physiology , Young Adult , Peroneal Nerve/physiology
2.
PLoS One ; 18(11): e0284415, 2023.
Article in English | MEDLINE | ID: mdl-37917737

ABSTRACT

Lower pH and elevated temperature alter phytoplankton growth and biomass in short-term incubations, but longer-term responses and adaptation potential are less well-studied. To determine the future of the coccolithophore Emiliania huxleyi, a mixed genotype culture from subantarctic water was incubated for 720 days under present-day temperature and pH, and also projected future conditions by the year 2100. The future population exhibited a higher growth rate relative to present-day cells transferred to future conditions after 309 days, indicating adaptation or genotype selection; this was reflected by an increase in optimum growth temperature of ~2.5°C by the end of the experiment. Following transfer to opposing conditions in short-term cross-over incubations, cell volume responded rapidly, within eight generations, confirming trait plasticity. The changes in growth rate and cell volume were larger than reported in previous single stressor relationships and incubations, suggesting synergistic or additive effects of combined elevated temperature and lower pH and highlighting the importance of long-term multiple stressor experiments. At the end of the incubation there were no significant differences in cellular composition (particulate organic content and chlorophyll a), or primary production between present-day and future populations. Conversely, two independent methods showed a 50% decrease in both particulate inorganic carbon and calcification rate, consistent with the decrease in cell volume, in the future population. The observed plasticity and adaptive capacity of E. huxleyi indicate resilience to future conditions in subantarctic waters, although changes in cell volume and carbonate may alter grazing loss and cell ballast, so influencing carbon export to the deep ocean.


Subject(s)
Haptophyta , Chlorophyll A , Carbon Dioxide/chemistry , Carbonates/chemistry , Carbon , Phytoplankton/physiology
3.
Proc Natl Acad Sci U S A ; 120(48): e2308696120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37991941

ABSTRACT

Our understanding of ocean-cloud interactions and their effect on climate lacks insight into a key pathway: do biogenic marine emissions form new particles in the open ocean atmosphere? Using measurements collected in ship-borne air-sea interface tanks deployed in the Southwestern Pacific Ocean, we identified new particle formation (NPF) during nighttime that was related to plankton community composition. We show that nitrate ions are the only species for which abundance could support NPF rates in our semicontrolled experiments. Nitrate ions also prevailed in the natural pristine marine atmosphere and were elevated under higher sub-10 nm particle concentrations. We hypothesize that these nucleation events were fueled by complex, short-term biogeochemical cycling involving the microbial loop. These findings suggest a new perspective with a previously unidentified role of nitrate of marine biogeochemical origin in aerosol nucleation.


Subject(s)
Atmosphere , Nitrates , Atmosphere/chemistry , Climate , Organic Chemicals/chemistry , Pacific Ocean , Aerosols/chemistry
4.
Sci Adv ; 9(21): eadg8156, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37224250

ABSTRACT

Degradation of defective mitochondria is an essential process to maintain cellular homeostasis and it is strictly regulated by the ubiquitin-proteasome system (UPS) and lysosomal activities. Here, using genome-wide CRISPR and small interference RNA screens, we identified a critical contribution of the lysosomal system in controlling aberrant induction of apoptosis following mitochondrial damage. After treatment with mitochondrial toxins, activation of the PINK1-Parkin axis triggered a BAX- and BAK-independent process of cytochrome c release from mitochondria followed by APAF1 and caspase 9-dependent apoptosis. This phenomenon was mediated by UPS-dependent outer mitochondrial membrane (OMM) degradation and was reversed using proteasome inhibitors. We found that the subsequent recruitment of the autophagy machinery to the OMM protected cells from apoptosis, mediating the lysosomal degradation of dysfunctional mitochondria. Our results underscore a major role of the autophagy machinery in counteracting aberrant noncanonical apoptosis and identified autophagy receptors as key elements in the regulation of this process.


Subject(s)
Apoptosis , Mitophagy , bcl-2-Associated X Protein/genetics , Autophagy , Mitochondria , Ubiquitin
5.
Bioengineering (Basel) ; 10(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37106655

ABSTRACT

This study investigated electromyography (EMG)-force relations using both simulated and experimental approaches. A motor neuron pool model was first implemented to simulate EMG-force signals, focusing on three different conditions that test the effects of small or large motor units located more or less superficially in the muscle. It was found that the patterns of the EMG-force relations varied significantly across the simulated conditions, quantified by the slope (b) of the log-transformed EMG-force relation. b was significantly higher for large motor units, which were preferentially located superficially rather than for random depth or deep depth conditions (p < 0.001). The log-transformed EMG-force relations in the biceps brachii muscles of nine healthy subjects were examined using a high-density surface EMG. The slope (b) distribution of the relation across the electrode array showed a spatial dependence; b in the proximal region was significantly larger than the distal region, whereas b was not different between the lateral and medial regions. The findings of this study provide evidence that the log-transformed EMG-force relations are sensitive to different motor unit spatial distributions. The slope (b) of this relation may prove to be a useful adjunct measure in the investigation of muscle or motor unit changes associated with disease, injury, or aging.

6.
Front Physiol ; 14: 1137146, 2023.
Article in English | MEDLINE | ID: mdl-37008017

ABSTRACT

This study examined methods for estimating the innervation zone (IZ) of a muscle using recorded monopolar high density M waves. Two IZ estimation methods based on principal component analysis (PCA) and Radon transform (RT) were examined. Experimental M waves, acquired from the biceps brachii muscles of nine healthy subjects were used as testing data sets. The performance of the two methods was evaluated by comparing their IZ estimations with manual IZ detection by experienced human operators. Compared with manual detection, the agreement rate of the estimated IZs was 83% and 63% for PCA and RT based methods, respectively, both using monopolar high density M waves. In contrast, the agreement rate was 56% for cross correlation analysis using bipolar high density M waves. The mean difference in estimated IZ location between manual detection and the tested method was 0.12 ± 0.28 inter-electrode-distance (IED) for PCA, 0.33 ± 0.41 IED for RT and 0.39 ± 0.74 IED for cross correlation-based methods. The results indicate that the PCA based method was able to automatically detect muscle IZs from monopolar M waves. Thus, PCA provides an alternative approach to estimate IZ location of voluntary or electrically-evoked muscle contractions, and may have particular value for IZ detection in patients with impaired voluntary muscle activation.

7.
Bioengineering (Basel) ; 10(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36829711

ABSTRACT

A surface electromyography (EMG) analysis was performed in this study to examine central neural and peripheral muscle changes after a spinal cord injury (SCI). A linear electrode array was used to record surface EMG signals from the biceps brachii (BB) in 15 SCI subjects and 14 matched healthy control subjects as they performed elbow flexor isometric contractions from 10% to 80% maximum voluntary contraction. Muscle fiber conduction velocity (MFCV) and BB EMG-force relation were examined. MFCV was found to be significantly slower in the SCI group than the control group, evident at all force levels. The BB EMG-force relation was well fit by quadratic functions in both groups. All healthy control EMG-force relations were best fit with positive quadratic coefficients. In contrast, the EMG-force relation in eight SCI subjects was best fit with negative quadratic coefficients, suggesting impaired EMG modulation at high forces. The alterations in MFCV and EMG-force relation after SCI suggest complex neuromuscular changes after SCI, including alterations in central neural drive and muscle properties.

8.
Asian J Androl ; 25(1): 82-85, 2023.
Article in English | MEDLINE | ID: mdl-35562126

ABSTRACT

This study investigated whether free prostate-specific antigen (fPSA) performs better than total PSA (tPSA) in predicting prostate volume (PV) in Chinese men with different PSA levels. A total of 5463 men with PSA levels of <10 ng ml-1 and without prostate cancer diagnosis were included in this study. Patients were classified into four groups: PSA <2.5 ng ml-1, 2.5-3.9 ng ml-1, 4.0-9.9 ng ml-1, and 2.5-9.9 ng ml-1. Pearson/Spearman's correlation coefficient (r) and receiver operating characteristic (ROC) curves were used to evaluate the ability of tPSA and fPSA to predict PV. The correlation coefficient between tPSA and PV in the PSA <2.5 ng ml-1 cohort (r = 0.422; P < 0.001) was markedly higher than those of the cohorts with PSA levels of 2.5-3.9 ng ml-1, 4.0-9.9 ng ml-1, and 2.5-9.9 ng ml-1 (r = 0.114, 0.167, and 0.264, respectively; all P ≤ 0.001), while fPSA levels did not differ significantly among different PSA groups. Area under ROC curve (AUC) analyses revealed that the performance of fPSA in predicting PV ≥40 ml (AUC: 0.694, 0.714, and 0.727) was better than that of tPSA (AUC = 0.545, 0.561, and 0.611) in men with PSA levels of 2.5-3.9 ng ml-1, 4.0-9.9 ng ml-1, and 2.5-9.9 ng ml-1, respectively, but not at PSA levels of <2.5 ng ml-1 (AUC: 0.713 vs 0.720). These findings suggest that the relationship between tPSA and PV may vary with PSA level and that fPSA is more powerful at predicting PV only in the ''gray zone'' (PSA levels of 2.5-9.9 ng ml-1), but its performance was similar to that of tPSA at PSA levels of <2.5 ng ml-1.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Male , Humans , Prostate , East Asian People , Prostatic Neoplasms/diagnosis , ROC Curve
9.
Article in English | MEDLINE | ID: mdl-36260575

ABSTRACT

This study presents a novel method to estimate a muscle's innervation zone (IZ) location from monopolar high density surface electromyography (EMG) signals. Based on the fact that 2nd principal component coefficients derived from principal component analysis (PCA) are linearly related with the time delay of different channels, the channels located near the IZ should have the shortest time delays. Accordingly, we applied a novel method to estimate a muscle's IZ based on PCA. The performance of the developed method was evaluated by both simulation and experimental approaches. The method based on 2nd principal component of monopolar high density surface EMG achieved a comparable performance to cross-correlation analysis of bipolar signals when noise was simulated to be independently distributed across all channels. However, in simulated conditions of specific channel contamination, the PCA based method achieved superior performance than the cross-correlation method. Experimental high density surface EMG was recorded from the biceps brachii of 9 healthy subjects during maximum voluntary contractions. The PCA and cross-correlation based methods achieved high agreement, with a difference in IZ location of 0.47 ± 0.4 IED (inter-electrode distance = 8 mm). The results indicate that analysis of 2nd principal component coefficients provides a useful approach for IZ estimation using monopolar high density surface EMG.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Humans , Electromyography/methods , Muscle, Skeletal/physiology , Muscle Contraction/physiology , Isometric Contraction/physiology , Arm
10.
Asian Journal of Andrology ; (6): 82-85, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-970999

ABSTRACT

This study investigated whether free prostate-specific antigen (fPSA) performs better than total PSA (tPSA) in predicting prostate volume (PV) in Chinese men with different PSA levels. A total of 5463 men with PSA levels of <10 ng ml-1 and without prostate cancer diagnosis were included in this study. Patients were classified into four groups: PSA <2.5 ng ml-1, 2.5-3.9 ng ml-1, 4.0-9.9 ng ml-1, and 2.5-9.9 ng ml-1. Pearson/Spearman's correlation coefficient (r) and receiver operating characteristic (ROC) curves were used to evaluate the ability of tPSA and fPSA to predict PV. The correlation coefficient between tPSA and PV in the PSA <2.5 ng ml-1 cohort (r = 0.422; P < 0.001) was markedly higher than those of the cohorts with PSA levels of 2.5-3.9 ng ml-1, 4.0-9.9 ng ml-1, and 2.5-9.9 ng ml-1 (r = 0.114, 0.167, and 0.264, respectively; all P ≤ 0.001), while fPSA levels did not differ significantly among different PSA groups. Area under ROC curve (AUC) analyses revealed that the performance of fPSA in predicting PV ≥40 ml (AUC: 0.694, 0.714, and 0.727) was better than that of tPSA (AUC = 0.545, 0.561, and 0.611) in men with PSA levels of 2.5-3.9 ng ml-1, 4.0-9.9 ng ml-1, and 2.5-9.9 ng ml-1, respectively, but not at PSA levels of <2.5 ng ml-1 (AUC: 0.713 vs 0.720). These findings suggest that the relationship between tPSA and PV may vary with PSA level and that fPSA is more powerful at predicting PV only in the ''gray zone'' (PSA levels of 2.5-9.9 ng ml-1), but its performance was similar to that of tPSA at PSA levels of <2.5 ng ml-1.


Subject(s)
Male , Humans , Prostate-Specific Antigen , Prostate , East Asian People , Prostatic Neoplasms/diagnosis , ROC Curve
11.
Cell Death Differ ; 29(7): 1318-1334, 2022 07.
Article in English | MEDLINE | ID: mdl-35726022

ABSTRACT

The ability of mitochondria to buffer a rapid rise in cytosolic Ca2+ is a hallmark of proper cell homeostasis. Here, we employed m-3M3FBS, a putative phospholipase C (PLC) agonist, to explore the relationships between intracellular Ca2+ imbalance, mitochondrial physiology, and cell death. m-3M3FBS induced a potent dose-dependent Ca2+ release from the endoplasmic reticulum (ER), followed by a rise in intra-mitochondrial Ca2+. When the latter exceeded the organelle buffering capacity, an abrupt mitochondrial inner membrane permeabilization (MIMP) occurred, releasing matrix contents into the cytosol. MIMP was followed by cell death that was independent of Bcl-2 family members and inhibitable by the intracellular Ca2+ chelator BAPTA-AM. Cyclosporin A (CsA), capable of blocking the mitochondrial permeability transition (MPT), completely prevented cell death induced by m-3M3FBS. However, CsA acted upstream of mitochondria by preventing Ca2+ release from ER stores. Therefore, loss of Ca2+ intracellular balance and mitochondrial Ca2+ overload followed by MIMP induced a cell death process that is distinct from Bcl-2 family-regulated mitochondrial outer membrane permeabilization (MOMP). Further, the inhibition of cell death by CsA or its analogues can be independent of effects on the MPT.


Subject(s)
Calcium , Mitochondrial Membranes , Apoptosis , Calcium/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , bcl-2-Associated X Protein/metabolism
12.
J Phycol ; 58(3): 347-363, 2022 06.
Article in English | MEDLINE | ID: mdl-35286717

ABSTRACT

Carbon sequestration is defined as the secure storage of carbon-containing molecules for >100 years, and in the context of carbon dioxide removal for climate mitigation, the origin of this CO2 is from the atmosphere. On land, trees globally sequester substantial amounts of carbon in woody biomass, and an analogous role for seaweeds in ocean carbon sequestration has been suggested. The purposeful expansion of natural seaweed beds and aquaculture systems, including into the open ocean (ocean afforestation), has been proposed as a method of increasing carbon sequestration and use in carbon trading and offset schemes. However, to verify whether CO2 fixed by seaweeds through photosynthesis leads to carbon sequestration is extremely complex in the marine environment compared to terrestrial systems, because of the need to jointly consider: the comparatively rapid turnover of seaweed biomass, tracing the fate of carbon via particulate and dissolved organic carbon pathways in dynamic coastal waters, and the key role of atmosphere-ocean CO2 exchange. We propose a Forensic Carbon Accounting approach, in which a thorough analysis of carbon flows between the atmosphere and ocean, and into and out of seaweeds would be undertaken, for assessing the magnitude of CO2 removal and robust attribution of carbon sequestration to seaweeds.


Subject(s)
Carbon Sequestration , Seaweed , Atmosphere , Carbon Dioxide/metabolism , Climate , Seaweed/metabolism
13.
J Electromyogr Kinesiol ; 63: 102637, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35176686

ABSTRACT

The spatial distributions of muscle innervation zone (IZ) and muscle fiber conduction velocity (CV) were examined in nine healthy young male participants. High-density surface electromyography (EMG) was collected from the biceps brachii muscle when subjects performed isometric elbow flexions at 20% to 80% of the maximal voluntary contraction (MVC). A total of 9498 samples of IZs were identified and CVs were calculated using the Radon transform. The center and width of IZ sample distribution were compared within four different force levels and six medial to lateral electrode column positions using repeated measures ANOVA and multiple comparison tests. Significant shifts of IZ center were observed in the medial columns (Columns 5, 6, and 7) compared with the lateral columns (Columns 3 and 4) (p < 0.05). Similarly, significant differences in the IZ width were found in Column 7 and 8 compared to Column 3 (p < 0.05). In contrast, muscle CV was unaffected by column position. Instead, muscle CV was faster at 40% and 80% MVC compared to 20% MVC (p < 0.05). The findings of this study add further insights into the physiological properties of the biceps brachii muscle.


Subject(s)
Isometric Contraction , Muscle, Skeletal , Arm , Electromyography , Humans , Isometric Contraction/physiology , Male , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology
14.
Br J Dermatol ; 186(2): 376-377, 2022 02.
Article in English | MEDLINE | ID: mdl-34608625

ABSTRACT

We would like to present the case of eruptive keratoacanthomas associated with dupilumab therapy, which occurred in an 85-year-old woman receiving biologic therapy for the treatment of atopic dermatitis. With the increasing prevalence of Dupilumab usage, this is an important potential complication of which clinicians should be aware.


Subject(s)
Dermatitis, Atopic , Eczema , Keratoacanthoma , Aged, 80 and over , Antibodies, Monoclonal, Humanized/adverse effects , Dermatitis, Atopic/drug therapy , Female , Humans , Keratoacanthoma/chemically induced , Treatment Outcome
15.
Spinal Cord ; 60(3): 199-209, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34172926

ABSTRACT

STUDY DESIGN: This is a cross-sectional descriptive study. OBJECTIVES: To quantify differences in hand muscle morphology between persons with cervical spinal cord injury (SCI) and uninjured adults. SETTING: The study was performed at the Guangdong Work Injury Rehabilitation Hospital. METHODS: We quantified hand muscle cross-sectional area (CSA), thickness, and echo intensity (EI) in 18 persons with subacute to chronic SCI and 23 controls using ultrasound imaging. RESULTS: Mean SCI abductor pollicis brevis (APB), abductor digiti minimi (ADM), and first dorsal interosseous (FDI) CSA were ~26%, 43%, and 37% smaller than the control means, the deficit in the APB being less than the ADM (P < 0.05). Muscle thickness was also smaller after SCI, but deficits in ADM (31%) and FDI (20%) thickness were less than the CSA deficits (P < 0.05). In five SCI persons, APB CSA and/or opponens pollicis (OP) thickness were normal despite complete motor paralysis. Mean longitudinal image EI was 40% higher in the OP and 15% higher in the flexor pollicis brevis (FPB) after SCI (P < 0.05), suggesting denervation-induced infiltration of fat and fibrous tissues. OP EI was related to OP thickness (r = -0.6, P = 0.007, n = 18). Mean axial image EI was 10% higher in the APB and ADM after SCI (P < 0.05). There were no significant correlations between muscle morphological properties and clinical features in the SCI participants. CONCLUSION: Our results indicate significant SCI atrophy and elevated EI that are muscle dependent.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Adult , Cervical Cord/diagnostic imaging , Electromyography/methods , Hand/diagnostic imaging , Hand/physiology , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/diagnostic imaging , Ultrasonography
16.
Sci Rep ; 11(1): 281, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431943

ABSTRACT

One pathway by which the oceans influence climate is via the emission of sea spray that may subsequently influence cloud properties. Sea spray emissions are known to be dependent on atmospheric and oceanic physicochemical parameters, but the potential role of ocean biology on sea spray fluxes remains poorly characterized. Here we show a consistent significant relationship between seawater nanophytoplankton cell abundances and sea-spray derived Cloud Condensation Nuclei (CCN) number fluxes, generated using water from three different oceanic regions. This sensitivity of CCN number fluxes to ocean biology is currently unaccounted for in climate models yet our measurements indicate that it influences fluxes by more than one order of magnitude over the range of phytoplankton investigated.


Subject(s)
Atmosphere/chemistry , Microbiota , Seawater/microbiology , Climate
19.
Proc Math Phys Eng Sci ; 476(2237): 20190769, 2020 May.
Article in English | MEDLINE | ID: mdl-32518503

ABSTRACT

Surface ocean biogeochemistry and photochemistry regulate ocean-atmosphere fluxes of trace gases critical for Earth's atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or pCO2) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N2O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes.

20.
Glob Chang Biol ; 26(10): 5630-5645, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32597547

ABSTRACT

Ongoing ocean global change due to anthropogenic activities is causing multiple chemical and physical seawater properties to change simultaneously, which may affect the physiology of marine phytoplankton. The coccolithophore Emiliania huxleyi is a model species often employed in the study of the marine carbon cycle. The effect of ocean acidification (OA) on coccolithophore calcification has been extensively studied; however, physiological responses to multiple environmental drivers are still largely unknown. Here we examined two-way and multiple driver effects of OA and other key environmental drivers-nitrate, phosphate, irradiance, and temperature-on the growth, photosynthetic, and calcification rates, and the elemental composition of E. huxleyi. In addition, changes in functional gene expression were examined to understand the molecular mechanisms underpinning the physiological responses. The single driver manipulation experiments suggest decreased nitrate supply being the most important driver regulating E. huxleyi physiology, by significantly reducing the growth, photosynthetic, and calcification rates. In addition, the interaction of OA and decreased nitrate supply (projected for year 2100) had more negative synergistic effects on E. huxleyi physiology than all other two-way factorial manipulations, suggesting a linkage between the single dominant driver (nitrate) effects and interactive effects with other drivers. Simultaneous manipulation of all five environmental drivers to the conditions of the projected year 2100 had the largest negative effects on most of the physiological metrics. Furthermore, functional genes associated with inorganic carbon acquisition (RubisCO, AEL1, and δCA) and calcification (CAX3, AEL1, PATP, and NhaA2) were most downregulated by the multiple driver manipulation, revealing linkages between responses of functional gene expression and associated physiological metrics. These findings together indicate that for more holistic projections of coccolithophore responses to future ocean global change, it is necessary to understand the relative importance of environmental drivers both individually (i.e., mechanistic understanding) and interactively (i.e., cumulative effect) on coccolithophore physiology.


Subject(s)
Haptophyta , Gene Expression , Haptophyta/genetics , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...