Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 98(5): 873-877, 2022.
Article in English | MEDLINE | ID: mdl-34870543

ABSTRACT

PURPOSE: An effective response for a mass-casualty incident requires understanding the relevant basic science and physical impact; detailed preparedness among jurisdictions; and clear, sequential response planning, including formal operational exercises, logistics, interagency, and public-private coordination, rapid activation of resilience, and continual improvement from lessons learned and new knowledge. This ConRad 2021 meeting report describes steps for civilian medical and public health response planning for a nuclear detonation; the utility of this type of planning for broader application; and extension of this planning to the international community. CONCLUSION: A nuclear detonation requires a response within minutes to what will be a large-scale disaster complicated by radiation, including some elements that are similar to a broad range of incidents. The response could be further complicated if multiple incidents occur simultaneously. Required are detailed planning, preparedness and scripting for an immediate operational response, addressing clinical manifestations of evolving radiation illness, and flexibility to adapt to a rapidly changing situation. This need translates into the use of just-in-time information; effective, credible communication; situational awareness on a global scale; and a template upon which to apply capabilities in a multi-sector response. This effort is greatly facilitated using a 'playbook' approach, the basics of which are presented.


Subject(s)
Disaster Planning , Mass Casualty Incidents , Radiation Injuries , Humans
2.
Disaster Med Public Health Prep ; 13(5-6): 995-1010, 2019 12.
Article in English | MEDLINE | ID: mdl-31203830

ABSTRACT

A national need is to prepare for and respond to accidental or intentional disasters categorized as chemical, biological, radiological, nuclear, or explosive (CBRNE). These incidents require specific subject-matter expertise, yet have commonalities. We identify 7 core elements comprising CBRNE science that require integration for effective preparedness planning and public health and medical response and recovery. These core elements are (1) basic and clinical sciences, (2) modeling and systems management, (3) planning, (4) response and incident management, (5) recovery and resilience, (6) lessons learned, and (7) continuous improvement. A key feature is the ability of relevant subject matter experts to integrate information into response operations. We propose the CBRNE medical operations science support expert as a professional who (1) understands that CBRNE incidents require an integrated systems approach, (2) understands the key functions and contributions of CBRNE science practitioners, (3) helps direct strategic and tactical CBRNE planning and responses through first-hand experience, and (4) provides advice to senior decision-makers managing response activities. Recognition of both CBRNE science as a distinct competency and the establishment of the CBRNE medical operations science support expert informs the public of the enormous progress made, broadcasts opportunities for new talent, and enhances the sophistication and analytic expertise of senior managers planning for and responding to CBRNE incidents.


Subject(s)
Biohazard Release/prevention & control , Chemical Hazard Release/prevention & control , Emergency Medical Services/methods , Explosive Agents/adverse effects , Radioactive Hazard Release/prevention & control , Disaster Planning/organization & administration , Disaster Planning/trends , Emergency Medical Services/trends , Humans
3.
Disaster Med Public Health Prep ; 6(4): 408-14, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23241473

ABSTRACT

The user-managed inventory (UMI) is an emerging idea for enhancing the current distribution and maintenance system for emergency medical countermeasures (MCMs). It increases current capabilities for the dispensing and distribution of MCMs and enhances local/regional preparedness and resilience. In the UMI, critical MCMs, especially those in routine medical use ("dual utility") and those that must be administered soon after an incident before outside supplies can arrive, are stored at multiple medical facilities (including medical supply or distribution networks) across the United States. The medical facilities store a sufficient cache to meet part of the surge needs but not so much that the resources expire before they would be used in the normal course of business. In an emergency, these extra supplies can be used locally to treat casualties, including evacuees from incidents in other localities. This system, which is at the interface of local/regional and federal response, provides response capacity before the arrival of supplies from the Strategic National Stockpile (SNS) and thus enhances the local/regional medical responders' ability to provide life-saving MCMs that otherwise would be delayed. The UMI can be more cost-effective than stockpiling by avoiding costs due to drug expiration, disposal of expired stockpiled supplies, and repurchase for replacement.


Subject(s)
Disaster Planning/organization & administration , Emergency Medical Services/organization & administration , Emergency Medical Services/statistics & numerical data , Inventories, Hospital/organization & administration , Mass Casualty Incidents , Relief Work/organization & administration , Terrorism , Disaster Planning/statistics & numerical data , Humans , Inventories, Hospital/statistics & numerical data , Relief Work/statistics & numerical data , Rescue Work/organization & administration , Rescue Work/statistics & numerical data , United States
4.
Biosecur Bioterror ; 10(4): 346-71, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23244500

ABSTRACT

This article summarizes major points from a newly released guide published online by the Office of the Assistant Secretary for Preparedness and Response (ASPR). The article reviews basic principles about radiation and its measurement, short-term and long-term effects of radiation, and medical countermeasures as well as essential information about how to prepare for and respond to a nuclear detonation. A link is provided to the manual itself, which in turn is heavily referenced for readers who wish to have more detail.


Subject(s)
Communication , Disaster Planning , Nuclear Warfare , Population Surveillance , Radiation Injuries/therapy , Civil Defense/education , Emergency Shelter , Humans , International Agencies , Radiation Injuries/diagnosis , Radiometry , Transportation of Patients , Triage , United States
5.
Health Phys ; 101(3): 238-47, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21799340

ABSTRACT

Following the attacks of 11 September 2001, emergency preparedness within the U.S. Department of Health and Human Services, as well as at the Department of Defense and other federal agencies, received higher visibility, new mandates and increased funding. Emergency deployment teams increased the frequency of drills to enable better response to the health consequences of mass-casualty incidents. Interagency coordination has also continued to increase to more efficiently and effectively leverage federal resources toward emergency medical preparedness for both civilian and military populations.


Subject(s)
Emergency Medical Services/methods , Nuclear Warfare , Radiation Monitoring , Radiation Protection , Radioactive Hazard Release/prevention & control , Disaster Planning/legislation & jurisprudence , Disaster Planning/methods , Disaster Planning/organization & administration , Emergency Medical Services/legislation & jurisprudence , Emergency Medical Services/organization & administration , Humans , Radioactive Hazard Release/legislation & jurisprudence , United States , United States Dept. of Health and Human Services
7.
Disaster Med Public Health Prep ; 5 Suppl 1: S20-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21402809

ABSTRACT

The purpose of this article is to set the context for this special issue of Disaster Medicine and Public Health Preparedness on the allocation of scarce resources in an improvised nuclear device incident. A nuclear detonation occurs when a sufficient amount of fissile material is brought suddenly together to reach critical mass and cause an explosion. Although the chance of a nuclear detonation is thought to be small, the consequences are potentially catastrophic, so planning for an effective medical response is necessary, albeit complex. A substantial nuclear detonation will result in physical effects and a great number of casualties that will require an organized medical response to save lives. With this type of incident, the demand for resources to treat casualties will far exceed what is available. To meet the goal of providing medical care (including symptomatic/palliative care) with fairness as the underlying ethical principle, planning for allocation of scarce resources among all involved sectors needs to be integrated and practiced. With thoughtful and realistic planning, the medical response in the chaotic environment may be made more effective and efficient for both victims and medical responders.


Subject(s)
Disaster Planning , Nuclear Weapons , Radioactive Fallout , Radioactive Hazard Release , Resource Allocation/methods , Emergency Medical Services/organization & administration , Explosions/classification , Humans , Mass Casualty Incidents/statistics & numerical data , Palliative Care , Radiation Injuries/therapy , Radioactive Hazard Release/classification , Terrorism , Triage
8.
Health Phys ; 98(2): 172-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20065680

ABSTRACT

A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals to allow for prompt triage and appropriate medical treatment. Measuring absorbed doses of ionizing radiation will require a system architecture or a system of platforms that contains diverse, integrated diagnostic and dosimetric tools that are accurate and precise. For large-scale incidents, rapidity and ease of screening are essential. The National Institute of Allergy and Infectious Diseases of the National Institutes of Health is the focal point within the Department of Health and Human Services (HHS) for basic research and development of medical countermeasures for radiation injuries. The Biomedical Advanced Research and Development Authority within the HHS Office of the Assistant Secretary for Preparedness and Response coordinates and administers programs for the advanced development and acquisition of emergency medical countermeasures for the Strategic National Stockpile. Using a combination of funding mechanisms, including funds authorized by the Project BioShield Act of 2004 and those authorized by the Pandemic and All-Hazards Preparedness Act of 2006, HHS is enhancing the nation's preparedness by supporting the radiation dose assessment capabilities that will ensure effective and appropriate use of medical countermeasures in the aftermath of a radiological or nuclear incident.


Subject(s)
Biological Assay/methods , Radioactive Hazard Release , Radiometry/methods , Triage/methods , Body Burden , Risk Assessment/methods , Triage/organization & administration , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...