Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotherapeutics ; : e00362, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38664194

ABSTRACT

Genomic screened homeobox 1 (Gsx1 or Gsh1) is a neurogenic transcription factor required for the generation of excitatory and inhibitory interneurons during spinal cord development. In the adult, lentivirus (LV) mediated Gsx1 expression promotes neural regeneration and functional locomotor recovery in a mouse model of lateral hemisection spinal cord injury (SCI). The LV delivery method is clinically unsafe due to insertional mutations to the host DNA. In addition, the most common clinical case of SCI is contusion/compression. In this study, we identify that adeno-associated virus serotype 6 (AAV6) preferentially infects neural stem/progenitor cells (NSPCs) in the injured spinal cord. Using a rat model of contusion SCI, we demonstrate that AAV6 mediated Gsx1 expression promotes neurogenesis, increases the number of neuroblasts/immature neurons, restores excitatory/inhibitory neuron balance and serotonergic neuronal activity through the lesion core, and promotes locomotor functional recovery. Our findings support that AAV6 preferentially targets NSPCs for gene delivery and confirmed Gsx1 efficacy in clinically relevant rat model of contusion SCI.

2.
Cells ; 12(6)2023 03 09.
Article in English | MEDLINE | ID: mdl-36980193

ABSTRACT

Spinal cord injury (SCI) is a complex tissue injury resulting in permanent and degenerating damage to the central nervous system (CNS). Detrimental cellular processes occur after SCI, including axonal degeneration, neuronal loss, neuroinflammation, reactive gliosis, and scar formation. The glial scar border forms to segregate the neural lesion and isolate spreading inflammation, reactive oxygen species, and excitotoxicity at the injury epicenter to preserve surrounding healthy tissue. The scar border is a physicochemical barrier composed of elongated astrocytes, fibroblasts, and microglia secreting chondroitin sulfate proteoglycans, collogen, and the dense extra-cellular matrix. While this physiological response preserves viable neural tissue, it is also detrimental to regeneration. To overcome negative outcomes associated with scar formation, therapeutic strategies have been developed: the prevention of scar formation, the resolution of the developed scar, cell transplantation into the lesion, and endogenous cell reprogramming. This review focuses on cellular/molecular aspects of glial scar formation, and discusses advantages and disadvantages of strategies to promote regeneration after SCI.


Subject(s)
Gliosis , Spinal Cord Injuries , Humans , Gliosis/pathology , Cicatrix/pathology , Spinal Cord Injuries/pathology , Astrocytes/pathology , Nerve Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...