Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 23(1): e202100495, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34797020

ABSTRACT

For decades prebiotic chemists have attempted to achieve replication of RNA under prebiotic conditions with only limited success. One of the long-recognized impediments to achieving true replication of a duplex (copying of both strands) is the so-called strand inhibition problem. Specifically, while the two strands of an RNA (or DNA) duplex can be separated by heating, upon cooling the strands of a duplex will reanneal before mononucleotide or oligonucleotide substrates can bind to the individual strands. Here we demonstrate that a class of plausible prebiotic solvents, when coupled with thermal cycling and varying levels of hydration, circumvents the strand inhibition problem, and allows multiple rounds of information transfer from both strands of a duplex (replication). Replication was achieved by simultaneous ligation of oligomers that bind to their templates with the aid of the solvents. The solvents used consisted of concentrated solutions of urea and acetamide in water (UAcW), components that were likely abundant on the early Earth. The UAcW solvent system favors the annealing of shorter strands over the re-annealing of long strands, thereby circumventing strand inhibition. We observed an improvement of DNA and RNA replication yields by a factor of 100× over aqueous buffer. Information transfer in the UAcW solvent system is robust, being achieved for a range of solvent component ratios, various drying conditions, and in the absence or presence of added salts.


Subject(s)
Acetamides/pharmacology , DNA/antagonists & inhibitors , RNA/antagonists & inhibitors , Urea/pharmacology , Acetamides/chemistry , DNA/metabolism , Nucleic Acid Conformation , RNA/metabolism , Solutions , Urea/chemistry
2.
Nat Commun ; 12(1): 842, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558542

ABSTRACT

Discovering autocatalytic chemistries that can evolve is a major goal in systems chemistry and a critical step towards understanding the origin of life. Autocatalytic networks have been discovered in various chemistries, but we lack a general understanding of how network topology controls the Darwinian properties of variation, differential reproduction, and heredity, which are mediated by the chemical composition. Using barcoded sequencing and droplet microfluidics, we establish a landscape of thousands of networks of RNAs that catalyze their own formation from fragments, and derive relationships between network topology and chemical composition. We find that strong variations arise from catalytic innovations perturbing weakly connected networks, and that growth increases with global connectivity. These rules imply trade-offs between reproduction and variation, and between compositional persistence and variation along trajectories of network complexification. Overall, connectivity in reaction networks provides a lever to balance variation (to explore chemical states) with reproduction and heredity (persistence being necessary for selection to act), as required for chemical evolution.


Subject(s)
Biocatalysis , Metabolic Networks and Pathways , RNA/metabolism
3.
Chembiochem ; 21(23): 3359-3370, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32705742

ABSTRACT

Chemical ligation is an important tool for the generation of synthetic DNA structures, which are used for a wide range of applications. Surprisingly, reported chemical ligation yields can range from 30 to 95 % for the same chemical activating agent and comparable DNA structures. We report a systematic study of DNA ligation by using a well-defined bimolecular test system and a water-soluble carbodiimide (EDC) as a phosphate-activating agent. Our results emphasize the interplay between template-substrate complex stability and the rates of the chemical steps of ligation, with 3' phosphate substrates providing yields near 100 % after 24 hours for particularly favorable reaction conditions. Ligation rates are also shown to be sensitive to the identity of the base pairs flanking a nick site, with as much as threefold variation. Finally, the observation that DNA substrates are modified by EDC at rates that can be comparable with ligation rates emphasizes the importance of considering side reactions when designing protocols to maximize ligation yields.


Subject(s)
Carbodiimides/chemistry , DNA/chemistry , Temperature
4.
RNA ; 25(4): 453-464, 2019 04.
Article in English | MEDLINE | ID: mdl-30670484

ABSTRACT

There are several plausible abiotic synthetic routes from prebiotic chemical materials to ribonucleotides and even short RNA oligomers. However, for refinement of the RNA World hypothesis to help explain the origins of life on the Earth, there needs to be a manner by which such oligomers can increase their length and expand their sequence diversity. Oligomers longer than at least 10-20 nucleotides would be needed for raw material for subsequent natural selection. Here, we explore spontaneous RNA-RNA recombination as a facile means by which such length and diversity enhancement could have been realized. Motivated by the discovery that RNA oligomers stored for long periods of time in the freezer expand their lengths, we systematically investigated RNA-RNA recombination processes. In addition to one known mechanism, we discovered at least three new mechanisms. In these, one RNA oligomer acts as a splint to catalyze the hybridization of two other oligomers and facilitates the attack of a 5'-OH, a 3'-OH, or a 2'-OH nucleophile of one oligomer onto a target atom of another. This leads to the displacement of one RNA fragment and the production of new recombinant oligomers. We show that this process can explain the spontaneous emergence of sequence complexity, both in vitro and in silico.


Subject(s)
Oligoribonucleotides/chemistry , RNA/chemistry , Recombination, Genetic , Base Pairing , Base Sequence , Genetic Variation , Models, Chemical , Oligoribonucleotides/chemical synthesis , Oligoribonucleotides/genetics , Origin of Life , RNA/chemical synthesis , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...