Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Phytopathology ; 107(2): 231-239, 2017 02.
Article in English | MEDLINE | ID: mdl-27775501

ABSTRACT

The fungus Monilinia vaccinii-corymbosi, a pathogen of Vaccinium spp., requires asexual and sexual spore production to complete its life cycle. A recent study found population structuring of M. vaccinii-corymbosi over a broad spatial scale in the United States. In this study, we examined fine-scale genetic structuring, temporal dynamics, and reproductive biology within a 125-by-132-m blueberry plot from 2010 to 2012. In total, 395 isolates of M. vaccinii-corymbosi were sampled from infected shoots and fruit to examine their multilocus haplotype (MLH) using microsatellite markers. The MLH of 190 single-ascospore isolates from 21 apothecia was also determined. Little to no genetic differentiation and unrestricted gene flow were detected among four sampled time points and between infected tissue types. Discriminant analysis of principal components suggested genetic structuring within the field, with at least K = 3 genetically distinct clusters maintained over four sampled time points. Single-ascospore progeny from eight apothecia had identical MLH and at least two distinct MLH were detected from 13 apothecia. Tests for linkage disequilibrium suggested that genetically diverse ascospore progeny were the product of recombination. This study supports the idea that the fine-scale dynamics of M. vaccinii-corymbosi may be complex, with genetic structuring, inbreeding, and outcrossing detected in the study area.


Subject(s)
Ascomycota/genetics , Blueberry Plants/microbiology , Genetic Variation , Plant Diseases/microbiology , Ascomycota/isolation & purification , Fruit/microbiology , Gene Flow , Haplotypes , Linkage Disequilibrium , Microsatellite Repeats/genetics , Spores, Fungal
2.
PLoS One ; 10(7): e0132545, 2015.
Article in English | MEDLINE | ID: mdl-26207812

ABSTRACT

Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum), highbush blueberry (V. corymbosum), and southern highbush blueberry (V. corymbosum hybrids) from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium) from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing host population or an environmental change.


Subject(s)
Basidiomycota/genetics , Basidiomycota/isolation & purification , Blueberry Plants/microbiology , Genetic Variation , Blueberry Plants/classification , DNA, Fungal/analysis , Fruit/genetics , Fruit/microbiology , Molecular Sequence Data , Multilocus Sequence Typing/methods , Mycological Typing Techniques/methods , Organ Specificity , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/microbiology , Sequence Analysis, DNA/methods
3.
Mycologia ; 106(3): 415-23, 2014.
Article in English | MEDLINE | ID: mdl-24871592

ABSTRACT

Exobasidium leaf and fruit spot of blueberry (Vaccinium section Cyanococcus) is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA. To determine whether this disease is caused by a new species of Exobasidium, we studied the morphology and phylogenetic relationship of the causal fungus compared with other members of the genus, including the type species E. vaccinii and other species that parasitize blueberry and cranberry (V. macrocarpon). Both scanning electron microscopy and light microscopy were used for morphological characterization. For phylogenetic analyses, we sequenced the large subunit of the rDNA (LSU) from 10 isolates collected from leaf or fruit spots of rabbiteye blueberry (V. virgatum), highbush blueberry (V. corymbosum) and southern highbush blueberry (Vaccinium interspecific hybrid) from Georgia and North Carolina and six isolates from leaf spots of lowbush blueberry (V. angustifolium) from Maine and Nova Scotia, Canada. LSU was sequenced from isolates causing red leaf disease of lowbush blueberry and red leaf spot (E. rostrupii) and red shoot (E. perenne) of cranberry. In addition, LSU sequences from GenBank, including sequences with high similarity to the emerging parasite and from Exobasidium spp. parasitizing other Vaccinium spp. and related hosts, were obtained. All sequences were aligned and subjected to phylogenetic analyses. Results indicated that the emerging parasite in the southeastern USA differs morphologically and phylogenetically from other described species and is described herein as Exobasidium maculosum. Within the southeastern USA, clustering based on host species, host tissue type (leaf or fruit) or geographic region was not detected; however, leaf spot isolates from lowbush blueberry were genetically different and likely represent a unique species.


Subject(s)
Basidiomycota/isolation & purification , Basidiomycota/physiology , Blueberry Plants/microbiology , Plant Diseases/microbiology , Vaccinium macrocarpon/microbiology , Basidiomycota/classification , Fruit/microbiology , Molecular Sequence Data , Phylogeny , Plant Leaves/microbiology , Southeastern United States
4.
J Gen Virol ; 94(Pt 6): 1426-1434, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23486668

ABSTRACT

A new disorder was observed on southern highbush blueberries in several south-eastern states in the USA. Symptoms included irregularly shaped circular spots or blotches with green centres on the upper and lower surfaces of leaves. Double-stranded RNA was extracted from symptomatic leaves suggesting the presence of virus(es) possibly involved in the disease. Sequencing revealed the presence of a novel RNA virus with a ~14 kb genome divided into four RNA segments. Sequence analyses showed that the virus, for which we propose the name Blueberry necrotic ring blotch virus (BNRBV), possesses protein domains conserved across RNA viruses in the alpha-virus-like supergroup. Phylogenetic inferences using different genes placed BNRBV in a clade that includes the Bromoviridae, the genus Cilevirus (CiLV) and the recently characterized Hibiscus green spot virus (HGSV). Despite the strong genetic relationships found among BNRBV, Cilevirus and HGSV, the genome of BNRBV contains three features that distinguish it significantly from its closest relatives: (i) the presence of two helicase domains with different evolutionary pathways, (ii) the existence of three conserved nucleotide stretches located at the 3' non-coding regions of each RNA segment and (iii) the conservation of terminal nucleotide motifs across each segment. Furthermore, CiLV and HGSV possess poly(A)-tailed bipartite and tripartite genomes, respectively, whereas BNRBV has a quadra-partite genome lacking a poly(A) tail. Based on these genetic features a new genus is proposed for the classification of BNRBV.


Subject(s)
Blueberry Plants/virology , Plant Diseases/virology , RNA Viruses/genetics , RNA Viruses/isolation & purification , Base Sequence , Genome, Viral , Molecular Sequence Data , Phylogeny , RNA Viruses/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...