Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 31(1): 144-58, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18004982

ABSTRACT

The maize (Zea mays L.) stem pulvinus is a disc of tissue located apical to each node that functions to return a tipped stem to a more upright position via increased cell elongation on its lower side. We investigated the possibility that reactive oxygen species (ROS) and hydrogen peroxide (H2O2), in particular, are involved in the gravitropic response of the pulvinus prior to initiation of the growth response by employing the cytochemical stain 3,3'-diaminobenzidine (DAB). DAB polymers were found in the bundle sheath cells of gravistimulated pulvini in association with amyloplasts after 1 min of gravistimulation, and the signal spread throughout the cytosol of these cells by 30 min. Furthermore, treatment of maize stem explants containing pulvini with 1 mm H2O2 on their upper sides caused reversal of bending polarity. Similar, though less dramatic, results were obtained via application of 1 mm ascorbic acid to the lower side of the explants. In addition, we determined that a maize cytoplasmic aconitase/iron regulatory protein 1 (IRP1) homolog is up-regulated in the pulvinus bundle sheath cells after gravistimulation using suppressive subtractive hybridization PCR (SSH PCR), real-time RT-PCR and in situ hybridization. Although we do not yet know the role of the IRP1 homolog in the pulvinus, the protein is known to be a redox sensor in other systems. Collectively, our results point to an increase in ROS quite early in the gravitropic signalling pathway and its possible role in determining the direction of bending of the pulvini. We speculate that an ROS burst may serve to link the physical phenomenon of amyloplast sedimentation to the changes in cellular biochemistry and gene expression that facilitate directional growth.


Subject(s)
Gene Expression Regulation, Plant/physiology , Gravitropism/physiology , Iron Regulatory Protein 1/metabolism , Reactive Oxygen Species/metabolism , Zea mays/growth & development , Zea mays/metabolism , Ascorbic Acid/pharmacology , Hydrogen Peroxide/pharmacology , Iron Regulatory Protein 1/chemistry , Iron Regulatory Protein 1/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/cytology , RNA, Messenger/metabolism , Resins, Plant/metabolism , Time Factors , Zea mays/drug effects
2.
Plant Physiol ; 115(3): 1101-7, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9390440

ABSTRACT

The protein synthesis elongation factor 1A (eEF1A) is a multifunctional protein in eukaryotic cells. In maize (Zea mays L.) endosperm eEF1A co-localizes with actin around protein bodies, and its accumulation is highly correlated with the protein-bound lysine (Lys) content. We purified eEF1A from maize kernels by ammonium sulfate precipitation, ion-exchange, and chromatofocusing. The identify of the purified protein was confirmed by microsequencing of an endoproteinase glutamic acid-C fragment and by its ability to bundle actin. Using purified eEF1A as a standard, we found that this protein contributes 0.4% of the total protein in W64A+ endosperm and approximately 1% of the protein in W64Ao2. Because eEF1A contains 10% Lys, it accounts for 2.2% of the total Lys in W64A+ and 2.3% of the Lys in W64Ao2. However, its concentration predicts 90% of the Lys found in endosperm proteins of both genotypes, indicating that eEF1A is a key component of the group of proteins that determines the nutritional quality of the grain. This notion is further supported by the fact that in floury2, another high-Lys mutant, the content of eEF1A increases with the dosage of the floury2 gene. These data provide the biochemical basis for further investigation of the relationship between eEF1A content and the nutritional quality of cereals.


Subject(s)
Peptide Elongation Factors/metabolism , Plant Proteins/metabolism , Zea mays/metabolism , Actins/metabolism , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA, Complementary , Gene Dosage , Molecular Sequence Data , Peptide Elongation Factor 1 , Peptide Elongation Factors/genetics , Peptide Elongation Factors/isolation & purification , Plant Proteins/genetics , Plant Proteins/isolation & purification , Protein Binding
3.
Proc Natl Acad Sci U S A ; 94(13): 7094-7, 1997 Jun 24.
Article in English | MEDLINE | ID: mdl-9192697

ABSTRACT

The maize floury2 mutation results in the formation of a soft, starchy endosperm with a reduced amount of prolamin (zein) proteins and twice the lysine content of the wild type. The mutation is semidominant and is associated with small, irregularly shaped protein bodies, elevated levels of a 70-kDa chaperone in the endoplasmic reticulum, and a novel 24-kDa polypeptide in the zein fraction. The 24-kDa polypeptide is a precursor of a 22-kDa alpha-zein protein that is not properly processed. The defect is due to an alanine-to-valine substitution at the C-terminal position of the signal peptide, which causes the protein to be anchored to the endoplasmic reticulum. We postulated that the phenotype associated with the floury2 mutation is caused by the accumulation of the 24-kDa alpha-zein protein. To test this hypothesis, we created transgenic maize plants that produce the mutant protein. We found that endosperm in seeds of these plants manifests the floury2 phenotype, thereby confirming that the mutant alpha-zein is the molecular basis of this mutation.


Subject(s)
Mutation , Zea mays/genetics , Zein/genetics , Gene Expression , Genes, Plant , Phenotype , Plants, Genetically Modified , Seeds , Zea mays/ultrastructure , Zein/ultrastructure
4.
Plant Cell ; 8(11): 2003-2014, 1996 Nov.
Article in English | MEDLINE | ID: mdl-12239373

ABSTRACT

By using indirect immunofluorescence and confocal microscopy, we documented changes in the distribution of elongation factor-1[alpha] (EF-1[alpha]), actin, and microtubules during the development of maize endosperm cells. In older interphase cells actively forming starch grains and protein bodies, the protein bodies are enmeshed in EF-1[alpha] and actin and are found juxtaposed with a multidirectional array of microtubules. Actin and EF-1[alpha] appear to exist in a complex, because we observed that the two are colocalized, and treatment with cytochalasin D resulted in the redistribution of EF-1[alpa]. These data suggest that EF-1[alpha] and actin are associated in maize endosperm cells and may help to explain the basis of the correlation we found between the concentration of EF-1[alpha] and lysine content. The data also support the hypothesis that the cytoskeleton plays a role in storage protein deposition. The distributions of EF-1[alpha] actin, and microtubules change during development. We observed that in young cells before the accumulation of starch and storage protein, EF-1[alpha], actin, and microtubules are found mainly in the cell cortex or in association with nuclei.

SELECTION OF CITATIONS
SEARCH DETAIL
...