Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Heredity (Edinb) ; 109(1): 34-40, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22378357

ABSTRACT

Association mapping of important traits of crop plants relies on first understanding the extent and patterns of linkage disequilibrium (LD) in the particular germplasm being investigated. We characterize here the genetic diversity, population structure and genome wide LD patterns in a set of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm from China. A diverse collection of 99 asparagus bean and normal cowpea accessions were genotyped with 1127 expressed sequence tag-derived single nucleotide polymorphism markers (SNPs). The proportion of polymorphic SNPs across the collection was relatively low (39%), with an average number of SNPs per locus of 1.33. Bayesian population structure analysis indicated two subdivisions within the collection sampled that generally represented the 'standard vegetable' type (subgroup SV) and the 'non-standard vegetable' type (subgroup NSV), respectively. Level of LD (r(2)) was higher and extent of LD persisted longer in subgroup SV than in subgroup NSV, whereas LD decayed rapidly (0-2 cM) in both subgroups. LD decay distance varied among chromosomes, with the longest (≈ 5 cM) five times longer than the shortest (≈ 1 cM). Partitioning of LD variance into within- and between-subgroup components coupled with comparative LD decay analysis suggested that linkage group 5, 7 and 10 may have undergone the most intensive epistatic selection toward traits favorable for vegetable use. This work provides a first population genetic insight into domestication history of asparagus bean and demonstrates the feasibility of mapping complex traits by genome wide association study in asparagus bean using a currently available cowpea SNPs marker platform.


Subject(s)
Asparagus Plant/genetics , Genome, Plant , Chromosome Mapping/methods , Genes, Plant , Genetic Linkage , Genetic Variation , Genome-Wide Association Study , Linkage Disequilibrium , Polymorphism, Single Nucleotide
2.
Funct Integr Genomics ; 9(3): 311-23, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19229567

ABSTRACT

Plant microspores can be reprogrammed from their normal pollen development to an embryogenic route in a process termed microspore embryogenesis or androgenesis. Stress treatment has a critical role in this process, inducing the dedifferentiation of microspores and conditioning the following androgenic response. In this study, we have used three barley doubled haploid lines with similar genetic background but different androgenic response. The Barley1 GeneChip was used for transcriptome comparison of these lines after mannitol stress treatment, allowing the identification of 213 differentially expressed genes. Most of these genes belong to the functional categories "cell rescue, defense, and virulence"; "metabolism"; "transcription"; and "transport". These genes were grouped into clusters according to their expression profiles among lines. A principal component analysis allowed us to associate specific gene expression clusters to phenotypic variables. Genes associated with the ability of microspores to divide and form embryos were mainly involved in changes in the structure and function of membranes, efficient use of available energy sources, and cell fate. Genes related to stress response, transcription and translation regulation, and degradation of pollen-specific proteins were associated with green plant production, while expression of genes related to plastid development was associated with albino plant regeneration.


Subject(s)
Albinism/genetics , Embryonic Development/genetics , Hordeum/anatomy & histology , Hordeum/embryology , Hordeum/genetics , Pigmentation/genetics , Pollen , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Hordeum/classification , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/embryology , Pollen/genetics , Principal Component Analysis
3.
Theor Appl Genet ; 113(6): 965-76, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16932885

ABSTRACT

Differential display was used to isolate cDNA clones showing differential expression in response to ABA, drought and cold in barley seedling shoots. One drought-regulated cDNA clone (DD12) was further analyzed and found to encode a branched-chain amino acid aminotransferase (HvBCAT-1). A genomic clone was isolated by probing the Morex BAC library with the cDNA clone DD12 and the structure of Hvbcat-1 was elucidated. The coding region is interrupted by six introns and contains a predicted mitochondrial transit peptide. Hvbcat1 was mapped to chromosome 4H. A comparison was made to rice and Arabidopsis genes to identify conserved structural patterns. Complementation of a yeast (Saccharomyces cerevisiae) double knockout strain revealed that HvBCAT-1 can function as the mitochondrial (catabolic) BCATs in vivo. Transcript levels of Hvbcat-1, increased in response to drought stress. As the first enzyme in the branched-chain amino acid (BCAA) catabolic pathway, HvBCAT-1 might have a role in the degradation of BCAA. Degradation of BCAA could serve as a detoxification mechanism that maintains the pool of free branched-chain amino acids at low and non toxic levels, under drought stress conditions.


Subject(s)
Gene Expression Regulation, Plant , Hordeum/genetics , Plant Proteins/genetics , Transaminases/genetics , Water/metabolism , Abscisic Acid/pharmacology , Amino Acid Sequence , Amino Acids, Branched-Chain/metabolism , Chromosome Mapping , Chromosomes, Plant , Cloning, Molecular , Conserved Sequence , Dehydration , Genetic Complementation Test , Hordeum/enzymology , Molecular Sequence Data , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Sequence Alignment , Sequence Analysis, Protein , Transaminases/chemistry , Transaminases/metabolism
4.
Genome ; 49(5): 531-44, 2006 May.
Article in English | MEDLINE | ID: mdl-16767178

ABSTRACT

The US Wheat Genome Project, funded by the National Science Foundation, developed the first large public Triticeae expressed sequence tag (EST) resource. Altogether, 116,272 ESTs were produced, comprising 100,674 5' ESTs and 15 598 3' ESTs. These ESTs were derived from 42 cDNA libraries, which were created from hexaploid bread wheat (Triticum aestivum L.) and its close relatives, including diploid wheat (T. monococcum L. and Aegilops speltoides L.), tetraploid wheat (T. turgidum L.), and rye (Secale cereale L.), using tissues collected from various stages of plant growth and development and under diverse regimes of abiotic and biotic stress treatments. ESTs were assembled into 18,876 contigs and 23,034 singletons, or 41,910 wheat unigenes. Over 90% of the contigs contained fewer than 10 EST members, implying that the ESTs represented a diverse selection of genes and that genes expressed at low and moderate to high levels were well sampled. Statistical methods were used to study the correlation of gene expression patterns, based on the ESTs clustered in the 1536 contigs that contained at least 10 5' EST members and thus representing the most abundant genes expressed in wheat. Analysis further identified genes in wheat that were significantly upregulated (p < 0.05) in tissues under various abiotic stresses when compared with control tissues. Though the function annotation cannot be assigned for many of these genes, it is likely that they play a role associated with the stress response. This study predicted the possible functionality for 4% of total wheat unigenes, which leaves the remaining 96% with their functional roles and expression patterns largely unknown. Nonetheless, the EST data generated in this project provide a diverse and rich source for gene discovery in wheat.


Subject(s)
Expressed Sequence Tags , Gene Expression Profiling , Triticum/genetics , Triticum/metabolism , Cluster Analysis , Contig Mapping , Data Collection , Databases, Genetic , Gene Library , Genes, Plant , Phylogeny , Polyploidy , Tissue Distribution , Triticum/growth & development
5.
Theor Appl Genet ; 110(5): 852-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15711789

ABSTRACT

Dehydrins (DHNs) compose a family of intrinsically unstructured proteins that have high water solubility and accumulate during late seed development, low temperature or water deficit conditions, and are thought to play a protective role in freezing and drought tolerance in plants. Twelve Dhn genes were previously described in the barley genome. Here, we report an additional member of this multigene family, Dhn13. The Dhn13 gene is located in chromosome 4 near marker MWG634 and encodes a 107-amino acid KS-type DHN. Semi-quantitative reverse transcriptase PCR data indicated that Dhn13 is constitutively expressed in seedling tissues and embryos of developing seeds. Microarray data were consistent with these results and showed a considerable increase of Dhn13 transcripts when plants were subjected to chilling and freezing temperatures. The highest transcript levels where observed in anthers. The presence of ABRE, MYC, DRE, and POLLEN1LELAT52 regulatory elements in the putative Dhn13 promoter region is in agreement with expression data.


Subject(s)
Gene Expression Regulation, Plant , Hordeum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/metabolism , Amino Acid Sequence , Base Sequence , Chromosome Mapping , DNA Primers , Genes, Regulator/genetics , Molecular Sequence Data , Multigene Family/genetics , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Seeds/genetics , Sequence Alignment , Sequence Analysis, DNA , Temperature
6.
Genetics ; 168(2): 585-93, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514037

ABSTRACT

This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5' and 3' sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics.


Subject(s)
Chromosome Mapping , Computational Biology , Contig Mapping , Expressed Sequence Tags/chemistry , Gene Deletion , Triticum/genetics , Blotting, Southern , DNA Probes , Gene Library
7.
Genetics ; 168(2): 595-608, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514038

ABSTRACT

A total of 37 original cDNA libraries and 9 derivative libraries enriched for rare sequences were produced from Chinese Spring wheat (Triticum aestivum L.), five other hexaploid wheat genotypes (Cheyenne, Brevor, TAM W101, BH1146, Butte 86), tetraploid durum wheat (T. turgidum L.), diploid wheat (T. monococcum L.), and two other diploid members of the grass tribe Triticeae (Aegilops speltoides Tausch and Secale cereale L.). The emphasis in the choice of plant materials for library construction was reproductive development subjected to environmental factors that ultimately affect grain quality and yield, but roots and other tissues were also included. Partial cDNA expressed sequence tags (ESTs) were examined by various measures to assess the quality of these libraries. All ESTs were processed to remove cloning system sequences and contaminants and then assembled using CAP3. Following these processing steps, this assembly yielded 101,107 sequences derived from 89,043 clones, which defined 16,740 contigs and 33,213 singletons, a total of 49,953 "unigenes." Analysis of the distribution of these unigenes among the libraries led to the conclusion that the enrichment methods were effective in reducing the most abundant unigenes and to the observation that the most diverse libraries were from tissues exposed to environmental stresses including heat, drought, salinity, or low temperature.


Subject(s)
Expressed Sequence Tags/chemistry , Gene Library , Triticum/genetics , Genetic Vectors , Sequence Analysis, DNA , Subtraction Technique
8.
Genetics ; 168(2): 625-37, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514040

ABSTRACT

The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous group 2 chromosomes to determine the distribution of ESTs, construct a consensus map of group 2 ESTs, investigate synteny, examine patterns of duplication, and assess the colinearity with rice of ESTs assigned to the group 2 consensus bin map. A total of 2600 loci generated from 1110 ESTs were mapped to group 2 chromosomes by Southern hybridization onto wheat aneuploid chromosome and deletion stocks. A consensus map was constructed of 552 ESTs mapping to more than one group 2 chromosome. Regions of high gene density in distal bins and low gene density in proximal bins were found. Two interstitial gene-rich islands flanked by relatively gene-poor regions on both the short and long arms and having good synteny with rice were discovered. The map locations of two ESTs indicated the possible presence of a small pericentric inversion on chromosome 2B. Wheat chromosome group 2 was shown to share syntenous blocks with rice chromosomes 4 and 7.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Genes, Plant , Oryza/genetics , Triticum/genetics , Genome, Plant , Ploidies , Sequence Alignment
9.
Genetics ; 168(2): 651-63, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514042

ABSTRACT

A total of 1918 loci, detected by the hybridization of 938 expressed sequence tag unigenes (ESTs) from 26 Triticeae cDNA libraries, were mapped to wheat (Triticum aestivum L.) homoeologous group 4 chromosomes using a set of deletion, ditelosomic, and nulli-tetrasomic lines. The 1918 EST loci were not distributed uniformly among the three group 4 chromosomes; 41, 28, and 31% mapped to chromosomes 4A, 4B, and 4D, respectively. This pattern is in contrast to the cumulative results of EST mapping in all homoeologous groups, as reported elsewhere, that found the highest proportion of loci mapped to the B genome. Sixty-five percent of these 1918 loci mapped to the long arms of homoeologous group 4 chromosomes, while 35% mapped to the short arms. The distal regions of chromosome arms showed higher numbers of loci than the proximal regions, with the exception of 4DL. This study confirmed the complex structure of chromosome 4A that contains two reciprocal translocations and two inversions, previously identified. An additional inversion in the centromeric region of 4A was revealed. A consensus map for homoeologous group 4 was developed from 119 ESTs unique to group 4. Forty-nine percent of these ESTs were found to be homoeologous to sequences on rice chromosome 3, 12% had matches with sequences on other rice chromosomes, and 39% had no matches with rice sequences at all. Limited homology (only 26 of the 119 consensus ESTs) was found between wheat ESTs on homoeologous group 4 and the Arabidopsis genome. Forty-two percent of the homoeologous group 4 ESTs could be classified into functional categories on the basis of blastX searches against all protein databases.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genes, Plant , Triticum/genetics , Gene Deletion , Gene Duplication , Gene Library , Genome, Plant
10.
Genetics ; 168(2): 677-86, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514044

ABSTRACT

To localize wheat (Triticum aestivum L.) ESTs on chromosomes, 882 homoeologous group 6-specific ESTs were identified by physically mapping 7965 singletons from 37 cDNA libraries on 146 chromosome, arm, and sub-arm aneuploid and deletion stocks. The 882 ESTs were physically mapped to 25 regions (bins) flanked by 23 deletion breakpoints. Of the 5154 restriction fragments detected by 882 ESTs, 2043 (loci) were localized to group 6 chromosomes and 806 were mapped on other chromosome groups. The number of loci mapped was greatest on chromosome 6B and least on 6D. The 264 ESTs that detected orthologous loci on all three homoeologs using one restriction enzyme were used to construct a consensus physical map. The physical distribution of ESTs was uneven on chromosomes with a tendency toward higher densities in the distal halves of chromosome arms. About 43% of the wheat group 6 ESTs identified rice homologs upon comparisons of genome sequences. Fifty-eight percent of these ESTs were present on rice chromosome 2 and the remaining were on other rice chromosomes. Even within the group 6 bins, rice chromosomal blocks identified by 1-6 wheat ESTs were homologous to up to 11 rice chromosomes. These rice-block contigs were used to resolve the order of wheat ESTs within each bin.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Gene Deletion , Genes, Plant , Triticum/genetics , Expressed Sequence Tags , Gene Library , Genome, Plant , Sequence Alignment
11.
Genetics ; 168(2): 665-76, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514043

ABSTRACT

We constructed high-density deletion bin maps of wheat chromosomes 5A, 5B, and 5D, including 2338 loci mapped with 1052 EST probes and 217 previously mapped loci (total 2555 loci). This information was combined to construct a consensus chromosome bin map of group 5 including 24 bins. A relatively higher number of loci were mapped on chromosome 5B (38%) compared to 5A (34%) and 5D (28%). Differences in the levels of polymorphism among the three chromosomes were partially responsible for these differences. A higher number of duplicated loci was found on chromosome 5B (42%). Three times more loci were mapped on the long arms than on the short arms, and a significantly higher number of probes, loci, and duplicated loci were mapped on the distal halves than on the proximal halves of the chromosome arms. Good overall colinearity was observed among the three homoeologous group 5 chromosomes, except for the previously known 5AL/4AL translocation and a putative small pericentric inversion in chromosome 5A. Statistically significant colinearity was observed between low-copy-number ESTs from wheat homoeologous group 5 and rice chromosomes 12 (88 ESTs), 9 (72 ESTs), and 3 (84 ESTs).


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Genes, Plant , Oryza/genetics , Triticum/genetics , Expressed Sequence Tags , Genome, Plant , Sequence Alignment
12.
Genetics ; 168(2): 687-99, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514045

ABSTRACT

The objectives of this study were to develop a high-density chromosome bin map of homoeologous group 7 in hexaploid wheat (Triticum aestivum L.), to identify gene distribution in these chromosomes, and to perform comparative studies of wheat with rice and barley. We mapped 2148 loci from 919 EST clones onto group 7 chromosomes of wheat. In the majority of cases the numbers of loci were significantly lower in the centromeric regions and tended to increase in the distal regions. The level of duplicated loci in this group was 24% with most of these loci being localized toward the distal regions. One hundred nineteen EST probes that hybridized to three fragments and mapped to the three group 7 chromosomes were designated landmark probes and were used to construct a consensus homoeologous group 7 map. An additional 49 probes that mapped to 7AS, 7DS, and the ancestral translocated segment involving 7BS also were designated landmarks. Landmark probe orders and comparative maps of wheat, rice, and barley were produced on the basis of corresponding rice BAC/PAC and genetic markers that mapped on chromosomes 6 and 8 of rice. Identification of landmark ESTs and development of consensus maps may provide a framework of conserved coding regions predating the evolution of wheat genomes.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genes, Plant , Triticum/genetics , Gene Deletion , Gene Duplication , Genetic Markers , Genome, Plant , Hordeum/genetics , Oryza/genetics , Sequence Alignment
13.
Genetics ; 168(2): 701-12, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514046

ABSTRACT

Because of the huge size of the common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) genome of 17,300 Mb, sequencing and mapping of the expressed portion is a logical first step for gene discovery. Here we report mapping of 7104 expressed sequence tag (EST) unigenes by Southern hybridization into a chromosome bin map using a set of wheat aneuploids and deletion stocks. Each EST detected a mean of 4.8 restriction fragments and 2.8 loci. More loci were mapped in the B genome (5774) than in the A (5173) or D (5146) genomes. The EST density was significantly higher for the D genome than for the A or B. In general, EST density increased relative to the physical distance from the centromere. The majority of EST-dense regions are in the distal parts of chromosomes. Most of the agronomically important genes are located in EST-dense regions. The chromosome bin map of ESTs is a unique resource for SNP analysis, comparative mapping, structural and functional analysis, and polyploid evolution, as well as providing a framework for constructing a sequence-ready, BAC-contig map of the wheat genome.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genes, Plant , Genome, Plant , Triticum/genetics , Genetic Markers , Ploidies , Quantitative Trait Loci , Sequence Alignment
14.
Genome ; 45(1): 175-88, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11908660

ABSTRACT

An improved genetic linkage map has been constructed for cowpea (Vigna unguiculata L. Walp.) based on the segregation of various molecular markers and biological resistance traits in a population of 94 recombinant inbred lines (RILs) derived from the cross between 'IT84S-2049' and '524B'. A set of 242 molecular markers, mostly amplified fragment length polymorphism (AFLP), linked to 17 biological resistance traits, resistance genes, and resistance gene analogs (RGAs) were scored for segregation within the parental and recombinant inbred lines. These data were used in conjunction with the 181 random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), AFLP, and biochemical markers previously mapped to construct an integrated linkage map for cowpea. The new genetic map of cowpea consists of 11 linkage groups (LGs) spanning a total of 2670 cM, with an average distance of 6.43 cM between markers. Astonishingly, a large, contiguous portion of LG1 that had been undetected in previous mapping work was discovered. This region, spanning about 580 cM, is composed entirely of AFLP markers (54 in total). In addition to the construction of a new map, molecular markers associated with various biological resistance and (or) tolerance traits, resistance genes, and RGAs were also placed on the map, including markers for resistance to Striga gesnerioides races 1 and 3, CPMV, CPSMV, B1CMV, SBMV, Fusarium wilt, and root-knot nematodes. These markers will be useful for the development of tools for marker-assisted selection in cowpea breeding, as well as for subsequent map-based cloning of the various resistance genes.


Subject(s)
Chromosome Mapping , Magnoliopsida/genetics , Biomarkers , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Random Amplified Polymorphic DNA Technique
15.
Mol Gen Genet ; 264(1-2): 145-53, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11016844

ABSTRACT

Dehydrins (DHNs; LEA D11) are one of the typical families of plant proteins that accumulate in response to dehydration, low temperature, osmotic stress or treatment with abscisic acid (ABA), or during seed maturation. We previously found that three genes encoding low-molecular-weight DHNs (Dhn1, Dhn2 and Dhn9) map within a 15-cM region of barley chromosome 5H that overlaps a QTL for winterhardiness, while other Dhn genes encoding low- and high-molecular-weight DHNs are located on chromosomes 3H, 4H and 6H. Here we examine the expression of specific Dhn genes under conditions associated with expression of the winterhardiness phenotype. Plants grown at 4 degrees C or in the field in Riverside, California developed similar, modest levels of freezing tolerance, coinciding with little low-MW Dhn gene activity. Dicktoo (the more tolerant cultivar) and Morex (the less tolerant) grown in Saskatoon, Canada expressed higher levels of expression of genes for low-MW DHNs than did the same cultivars in Riverside, with expression being higher in Dicktoo than Morex. Dehydration or freeze-thaw also evoked expression of genes for low MW DHNs, suggesting that the dehydration component of freeze-thaw in the field induces low expression of genes encoding low-MW DHNs. These observations are consistent with the hypothesis that the major chilling-induced DHNs help to prime plant cells for acclimation to more intense cold, which then involves adaptation to dehydration during freeze-thaw cycling. A role for chromosome 5H-encoded DHNs in acclimation to more intense cold seems possible, even though it is not the basis of the major heritable variation in winterhardiness within the Dicktoo x Morex population.


Subject(s)
Hordeum/physiology , Plant Proteins/genetics , Adaptation, Physiological/genetics , Amino Acid Sequence , Cold Temperature , Freezing , Gene Expression Regulation, Plant , Genetic Variation , Molecular Sequence Data , Molecular Weight , Multigene Family , Plant Proteins/chemistry , Plant Proteins/metabolism , Seeds/physiology
16.
Proc Natl Acad Sci U S A ; 96(23): 13566-70, 1999 Nov 09.
Article in English | MEDLINE | ID: mdl-10557361

ABSTRACT

Dehydrins (DHNs, LEA D-11) are plant proteins present during environmental stresses associated with dehydration or low temperatures and during seed maturation. Functions of DHNs have not yet been defined. Earlier, we hypothesized that a approximately 35-kDa DHN and membrane properties that reduce electrolyte leakage from seeds confer chilling tolerance during seedling emergence of cowpea (Vigna unguiculata L. Walp.) in an additive and independent manner. Evidence for this hypothesis was not rigorous because it was based on correlations of presence/absence of the DHN and slow electrolyte leakage with chilling tolerance in closely related cowpea lines that have some other genetic differences. Here, we provide more compelling genetic evidence for involvement of the DHN in chilling tolerance of cowpea. We developed near-isogenic lines by backcrossing. We isolated and determined the sequence of a cDNA corresponding to the approximately 35-kDa DHN and used gene-specific oligonucleotides derived from it to test the genetic linkage between the DHN presence/absence trait and the DHN structural gene. We tested for association between the DHN presence/absence trait and both low-temperature seed emergence and electrolyte leakage. We show that allelic differences in the Dhn structural gene map to the same position as the DHN protein presence/absence trait and that the presence of the approximately 35-kDa DHN is indeed associated with chilling tolerance during seedling emergence, independent of electrolyte leakage effects. Two types of allelic variation in the Dhn gene were identified in the protein-coding region, deletion of one Phi-segment from the DHN-negative lines and two single amino acid substitutions.


Subject(s)
Alleles , Fabaceae/genetics , Genetic Variation , Plant Proteins/genetics , Plants, Medicinal , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA Primers , Electrolytes/metabolism , Fabaceae/metabolism , Genes, Plant , Molecular Sequence Data
17.
Plant Physiol ; 120(1): 237-44, 1999 May.
Article in English | MEDLINE | ID: mdl-10318701

ABSTRACT

Dehydrins are a family of proteins (LEA [late-embryogenesis abundant] D11) commonly induced by environmental stresses associated with low temperature or dehydration and during seed maturation drying. Our previous genetic studies suggested an association of an approximately 35-kD protein (by immunological evidence a dehydrin) with chilling tolerance during emergence of seedlings of cowpea (Vigna unguiculata) line 1393-2-11. In the present study we found that the accumulation of this protein in developing cowpea seeds is coordinated with the start of the dehydration phase of embryo development. We purified this protein from dry seeds of cowpea line 1393-2-11 by using the characteristic high-temperature solubility of dehydrins as an initial enrichment step, which was followed by three chromatography steps involving cation exchange, hydrophobic interaction, and anion exchange. Various characteristics of this protein confirmed that indeed it is a dehydrin, including total amino acid composition, partial amino acid sequencing, and the adoption of alpha-helical structure in the presence of sodium dodecyl sulfate. The propensity of dehydrins to adopt alpha-helical structure in the presence of sodium dodecyl sulfate, together with the apparent polypeptide adhesion property of this cowpea dehydrin, suggests a role in stabilizing other proteins or membranes. Taken together, the genetic, physiological, and physicochemical data are at this stage consistent with a cause-and-effect relationship between the presence in mature seeds of the approximately 35-kD dehydrin, which is the product of a single member of a multigene family, and an increment of chilling tolerance during emergence of cowpea seedlings.


Subject(s)
Fabaceae/metabolism , Plant Proteins/isolation & purification , Plants, Medicinal , Acclimatization , Amino Acid Sequence , Amino Acids/analysis , Cold Temperature , Fabaceae/genetics , Fabaceae/growth & development , Molecular Sequence Data , Molecular Weight , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Homology, Amino Acid
18.
Plant Mol Biol ; 38(3): 417-23, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9747849

ABSTRACT

Dehydrins (LEA D11 proteins) are the products of multigene families in a number of higher plants. To date, however, only one dehydrin locus, dhn1 (a major embryo and drought-induced protein of ca. 18 kDa) has been placed on chromosome 6L of the genetic linkage map of maize. The presence of a larger, ca. 40 kDa embryo protein that is also specifically detected by anti-dehydrin antibodies had been observed in some maize inbreds, including B73, suggesting that other dhn loci may exist. The ca. 22 kDa and ca. 40 kDa immunopositive proteins were purified from B73 and their amino acid compositions determined. The two proteins' amino acid compositions are typical of dehydrins, yet they differ from each other, indicating that they are distinct dhn gene products. Different size alleles for both proteins, or presence/absence in the case of the ca. 40 kDa protein, were evident from comparisons of embryo proteins of various maize inbreds. Analysis of segregating F2 progeny derived from self-pollination of F1 hybrids from four crosses (B73 x OH43, Mo17 x A632, AHO x A632, Latente x A632) revealed that alleles of the two genes assort independently. Map positions of the two dhn loci were then determined using two maize recombinant inbred line (RIL) mapping populations. The predicted map position of the gene controlling production of the ca. 22 kDa protein confirmed that this protein is the product of the dhn1 gene. The gene encoding the ca. 40 kDa dehydrin-like protein maps to a new locus on chromosome 9S near wx1, which we have named dhn2.


Subject(s)
Genes, Plant , Plant Proteins/genetics , Zea mays/genetics , Amino Acid Sequence , Amino Acids/analysis , Chromosome Mapping , Crosses, Genetic , Molecular Sequence Data , Molecular Weight , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Zea mays/chemistry , Zea mays/embryology
19.
Protein Expr Purif ; 6(5): 632-6, 1995 Oct.
Article in English | MEDLINE | ID: mdl-8535156

ABSTRACT

A maize dehydrin protein (Dhn1) containing 167 amino acids with a predicted molecular weight of 17.0 kDa was produced in the Escherichia coli overexpression strain BL21 (DE3)pLysS. Site-directed mutagenesis was used to construct a plasmid with a protein coding region corresponding exactly to the original cDNA. Protein production was induced by IPTG. Dhn1 was enriched from total soluble protein by heat-fractionation and centrifugation and then purified by sequential cation exchange and hydrophobic interaction chromatography. The purified protein was visualized by SDS-PAGE and immunoblot analysis using a polyclonal antibody to the dehydrin consensus region. Expression in E. coli resulted in approximately 1.2 mg of purified protein per liter of induced culture.


Subject(s)
Escherichia coli/metabolism , Plant Proteins/biosynthesis , Plant Proteins/isolation & purification , Zea mays/chemistry , Amino Acid Sequence , Base Sequence , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange/methods , Cloning, Molecular , Escherichia coli/genetics , Immunoblotting , Molecular Sequence Data , Plant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Solubility , Time Factors
20.
Plant Physiol ; 108(3): 1233-1239, 1995 Jul.
Article in English | MEDLINE | ID: mdl-12228540

ABSTRACT

An interval on barley (Hordeum vulgare L.) chromosome 7 accounting for significant quantitative trait locus effects for winter hardiness were detected in a winter (Dicktoo) x spring (Morex) barley population (P.M. Hayes, T. Blake, T.H.H. Chen, S. Tragoonrung, F. Chen, A. Pan, and B. Liu [1993] Genome 36: 66-71). Two members of the barley dehydrin gene family, Dhn1 and Dhn2, were located within the region defining the winter hardiness quantitative trait locus effect (A. Pan, P.M. Hayes, F. Chen, T. Blake, T.H.H. Chen, T.T.S. Wright, I. Karsai, Z. Bedo [1994] Theor Appl Genet 89: 900-910). To investigate the possible role of Dhn1 and Dhn2 in winter hardiness, we examined the expression pattern of six barley dehydrin gene family members in shoot tissue in response to cold temperature. Incubation of 3-week-old barley plants at 2[deg]C resulted in a rapid induction of a single 86-kD polypeptide that was recognized by an antiserum against a peptide conserved in the dehydrin gene family. Northern blot analysis confirmed the induction of an mRNA corresponding to Dhn5. The expression patterns of cold-induced dehydrins in shoot tissue for Dicktoo and Morex were identical under the conditions studied, in spite of the known phenotypic differences in their winter hardiness. These results, together with the allelic structure of selected high- and low-survival lines, suggest that the Dicktoo alleles at the Dhn1 and Dhn2 may not be the primary determinants of winter hardiness in barley.

SELECTION OF CITATIONS
SEARCH DETAIL
...