Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Cardiovasc Interv ; 16(8): e012875, 2023 08.
Article in English | MEDLINE | ID: mdl-37503662

ABSTRACT

BACKGROUND: Depression and cognitive dysfunction (CD) are not routinely screened for in patients before transcatheter aortic valve replacement (TAVR) and their association with postprocedural outcomes is poorly understood. The objectives of this study are to determine the prevalence of depression and CD in patients with aortic stenosis undergoing TAVR and evaluate their association with mortality and quality of life. METHODS: We analyzed a prospective, multicenter TAVR registry that systematically screened patients for preexisting depression and CD with the Patient Health Questionnaire-2 and Mini-Cog, respectively. The associations with mortality were assessed with Cox proportional hazard models and quality of life (Kansas City Cardiomyopathy Questionnaire and EuroQol visual analogue scale) were evaluated using multivariable ordinal regression models. RESULTS: A total of 884 patients were included; median follow-up was 2.88 years (interquartile range=1.2-3.7). At baseline, depression was observed in 19.6% and CD in 31.8%. In separate models, after adjustment, depression (HR, 1.45 [95% CI, 1.13-1.86]; P<0.01) and CD (HR, 1.27 [95% CI, 1.02-1.59]; P=0.04) were each associated with increased mortality. Combining depression and CD into a single model, mortality was greatest among those with both depression and CD (n=62; HR, 2.06 [CI, 1.44-2.96]; P<0.01). After adjustment, depression was associated with 6.6 (0.3-13.6) points lower on the Kansas City Cardiomyopathy Questionnaire 1-year post-TAVR and 6.7 (0.5-12.7) points lower on the EuroQol visual analogue scale. CD was only associated with lower EuroQol visual analogue scale. CONCLUSIONS: Depression and CD are common in patients that undergo TAVR and are associated with increased mortality and worse quality of life. Depression may be a modifiable therapeutic target to improve outcomes after TAVR.


Subject(s)
Aortic Valve Stenosis , Cardiomyopathies , Cognitive Dysfunction , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Quality of Life , Prospective Studies , Depression/diagnosis , Depression/epidemiology , Treatment Outcome , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/epidemiology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Patient-Centered Care , Cardiomyopathies/surgery , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Risk Factors
2.
Eur Heart J Digit Health ; 2(1): 90-103, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34048509

ABSTRACT

AIMS: Impaired physical function is common in patients undergoing transcatheter aortic valve replacement (TAVR) and associated with worse outcomes. Participation in centre-based cardiac rehabilitation (CR) after cardiovascular procedures is sub-optimal. We aimed to test a home-based mobile health exercise intervention as an alternative or complementary approach. METHODS AND RESULTS: At five centres, after a run-in period, eligible individuals treated with TAVR were randomized 1:1 at their 1-month post-TAVR visit to an intervention group [activity monitor (AM) with personalized daily step goal and resistance exercises] or a control group for 6 weeks. Among 50 participants, average age was 76 years, 34% were female, average STS score was 2.91.8, and 40% had Short Physical Performance Battery (SPPB) 9. Daily compliance with wearing the AM and performing exercises averaged 8590%. In the intention to treat population, there was no evidence that the intervention improved the co-primary endpoints: daily steps +769 (95% CI 244 to +1783); SPPB +0.68 (0.27 to 1.53); and Kansas City Cardiomyopathy Questionnaire 1.7 (9.1 to 7.1). The intervention did improve secondary physical activity parameters, including moderate-to-intense daily active minutes (P<0.05). In a pre-specified analysis including participants who did not participate in CR (n=30), the intervention improved several measures of physical activity: +1730 (1003360) daily steps; +66 (28105) daily active minutes; +53 (2780) moderate-to-intense active minutes; and 157 (265 to 50) sedentary minutes. CONCLUSION: Among selected participants treated with TAVR, this study did not provide evidence that a pragmatic home-based mobile health exercise intervention improved daily steps, physical performance or QoL for the overall cohort. However, the intervention did improve several measures of daily activity, particularly among individuals not participating in CR. TRIAL REGISTRY: Clinicaltrials.gov NCT03270124.

SELECTION OF CITATIONS
SEARCH DETAIL
...