Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37214942

ABSTRACT

During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO, and the ensuing PKA-C binding and inactivation, are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.

2.
Int J Mol Sci ; 23(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36233248

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, interstitial lung disease with a poor prognosis. Although specific anti-fibrotic medications are now available, the median survival time following diagnosis remains very low, and new therapies are urgently needed. To uncover novel therapeutic targets, we examined how biochemical properties of the fibrotic lung are different from the healthy lung. Previous work identified lactate as a metabolite that is upregulated in IPF lung tissue. Importantly, inhibition of the enzyme responsible for lactate production prevents fibrosis in vivo. Further studies revealed that fibrotic lesions of the lung experience a significant decline in tissue pH, likely due to the overproduction of lactate. It is not entirely clear how cells in the lung respond to changes in extracellular pH, but a family of proton sensing G-protein coupled receptors has been shown to be activated by reductions in extracellular pH. This work examines the expression profiles of proton sensing GPCRs in non-fibrotic and IPF-derived primary human lung fibroblasts. We identify TDAG8 as a proton sensing GPCR that is upregulated in IPF fibroblasts and that knockdown of TDAG8 dampens myofibroblast differentiation. To our surprise, BTB, a proposed positive allosteric modulator of TDAG8, inhibits myofibroblast differentiation. Our data suggest that BTB does not require TDAG8 to inhibit myofibroblast differentiation, but rather inhibits myofibroblast differentiation through suppression of RhoA mediated signaling. Our work highlights the therapeutic potential of BTB as an anti-fibrotic treatment and expands upon the importance of RhoA-mediated signaling pathways in the context of myofibroblast differentiation. Furthermore, this works also suggests that TDAG8 inhibition may have therapeutic relevance in the treatment of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , rhoA GTP-Binding Protein , Cell Differentiation/physiology , Fibroblasts/metabolism , Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lactates/metabolism , Lung/pathology , Myofibroblasts/metabolism , Protons , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...