Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Glob Chang Biol ; 30(2): e17181, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38372171

ABSTRACT

Nitrous oxide (N2 O) is a potent greenhouse gas and causes stratospheric ozone depletion. While the emissions of N2 O from soil are widely recognized, recent research has shown that terrestrial plants may also emit N2 O from their leaves under controlled laboratory conditions. However, it is unclear whether foliar N2 O emissions are universal across varying plant taxa, what the global significance of foliar N2 O emissions is, and how the foliage produces N2 O in situ. Here we investigated the abilities of 25 common plant taxa, including trees, shrubs and herbs, to emit N2 O under in situ conditions. Using 15 N isotopic labeling, we demonstrated that the foliage-emitted N2 O was predominantly derived from nitrate. Moreover, by selectively injecting biocide in conjunction with the isolating and back-inoculating of endophytes, we demonstrated that the foliar N2 O emissions were driven by endophytic bacteria. The seasonal N2 O emission rates ranged from 3.2 to 9.2 ng N2 O-N g-1 dried foliage h-1 . Extrapolating these emission rates to global foliar biomass and plant N uptake, we estimated global foliar N2 O emission to be 1.21 and 1.01 Tg N2 O-N year-1 , respectively. These estimates account for 6%-7% of the current global annual N2 O emission of 17 Tg N2 O-N year-1 , indicating that in situ foliar N2 O emission is a universal process for terrestrial plants and contributes significantly to the global N2 O inventory. This finding highlights the importance of measuring foliar N2 O emissions in future studies to enable the accurate assigning of mechanisms and the development of effective mitigation.


Subject(s)
Greenhouse Gases , Plants , Soil , Atmosphere , Biomass , Nitrous Oxide/analysis
2.
Sci Adv ; 9(6): eadd0041, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36753554

ABSTRACT

Even a small net increase in soil organic carbon (SOC) mineralization will cause a substantial increase in the atmospheric CO2 concentration. It is widely recognized that the SOC mineralization within deep critical zones (2 to 12 m depth) is slower and much less influenced by anthropogenic disturbance when compared to that of surface soil. Here, we showed that 20 years of nitrogen (N) fertilization enriched a deep critical zone with nitrate, almost doubling the SOC mineralization rate. This result was supported by corresponding increases in the expressions of functional genes typical of recalcitrant SOC degradation and enzyme activities. The CO2 released and the SOC had a similar 14C age (6000 to 10,000 years before the present). Our results indicate that N fertilization of crops may enhance CO2 emissions from deep critical zones to the atmosphere through a previously disregarded mechanism. This provides another reason for markedly improving N management in fertilized agricultural soils.

3.
Sci Total Environ ; 851(Pt 2): 158274, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36030860

ABSTRACT

The addition of carbon (C) substrate often modifies the rate of soil organic matter (SOM) decomposition. This is known as the priming effect. Nitrous oxide (N2O) emissions from soil are also linked to C substrate dynamics; however, the relationship between the priming effect and N2O emissions from soil is not understood. This study aimed to investigate the effects of C and N substrate addition on the linkages between SOM priming and N2O emissions. We applied 13C-labelled substrates (acetate, butyrate, glucose; 80 µg C g-1), with water as a control, and 15N-labelled N (300 µg N g-1 soil, potassium nitrate) to three different soils, and, after 3 days, we measured the effects on the priming of SOM and sources of N2O emission. Carbon substrate addition increased both CO2- and SOM-derived N2O emissions in the presence of exogenous N. Emissions of CO2 and N2O from soils with added glucose (mean ± standard deviation, 0.73 ± 0.13 µmol m-2 s-1 and 21.4 ± 12.1 mg N m-2 h-1) were higher (p < 0.05) than those from soils treated with acetate (0.64 ± 0.11 µmol m-2 s-1 and 10.9 ± 6.5 mg N m-2 h-1) or butyrate (0.61 ± 0.11 µmol m-2 s-1 and 11.0 ± 6.6 mg N m-2 h-1), respectively. Acetate addition induced a stronger (p < 0.05) priming effect on soil C (0.07 ± 0.09 µmol C m-2 s-1) than that for glucose (0.02 ± 0.10 µmol C m-2 s-1), while butyrate addition resulted in negative priming (-0.09 ± 0.05 µmol C m-2 s-1). SOM-derived N2O emissions were relatively low from soils with butyrate addition (1.4 ± 1.5 mg N m-2 h-1) compared with acetate (2.9 ± 2.3 mg N m-2 h-1) or glucose (9.2 ± 4.5 mg N m-2 h-1). There was no clear relationship between the priming effect and SOM-derived N2O emissions. The observed priming effect related to the potential electron donor supply of the C substrates was not observed. There is a need to further examine the role of soil priming in relation to soil N2O emissions.


Subject(s)
Nitrous Oxide , Soil , Nitrous Oxide/analysis , Soil/chemistry , Carbon , Nitrates , Carbon Dioxide/analysis , Organic Chemicals , Water , Glucose , Butyrates , Agriculture , Fertilizers
4.
Sci Total Environ ; 838(Pt 4): 156473, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35660610

ABSTRACT

Cattle grazing of pastures deposits urine onto the pasture soil at high nitrogen (N) rates that exceed the pasture's immediate N demands, increasing the risk of N loss. Nitrous oxide (N2O), a greenhouse gas, and dinitrogen (N2) are lost from the cattle urine patches. There is limited information on the in situ loss of N2 from grazed-pasture systems which is needed for understanding pasture soil N dynamics and balances. The 15N flux method was used to determine N2 and N2O fluxes over time following synthetic urine-15N application at either 400 or 800 kg N ha-1 to a grazed perennial pasture soil. Results showed that daily N2O fluxes were higher under 800 kg N ha-1 than under 400 kg N ha-1, but there was no significant difference in N2 fluxes. Cumulative N2O emissions from soil with 400 kg N ha-1 and 800 kg N ha-1 applied represented 0.16 ± 0.08% and 0.43 ± 0.08% of deposited N, respectively, while emitted N2 accounted for 32.1 ± 4.1% and 14.4 ± 1.7%, respectively, over 95 days after urine application. Codenitrification and denitrification co-occurred, with denitrification accounting for 97.9 to 98.5% of total N2 production. Recovery of urine-15N in pasture decreased with increasing N rate with 14.7 ± 0.5% and 9.9 ± 0.8% recovered at 400 and 800 kg N ha-1, respectively after 95 days. The N2O/(N2 + N2O) product ratio was generally higher during periods of nitrification of urine-N (the first month after urine application) but with no clear relationship to other measured variables. Contrary to our hypothesis, an elevated urine-N rate did not enhance N2 loss. This is speculated to be due to enhanced ammonia volatilisation and transfer of N as nitrate, to deeper soil layers. Soil relative gas diffusivity indicated that high N2 fluxes resulted from entrapped N2 diffusing from the draining soil.


Subject(s)
Nitrous Oxide , Soil , Ammonia , Animals , Cattle , Female , Nitrification , Nitrogen , Nitrous Oxide/analysis
5.
Bone Joint J ; 103-B(7): 1270-1276, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34192928

ABSTRACT

AIMS: This is a multicentre, non-inventor, prospective observational study of 503 INFINITY fixed bearing total ankle arthroplasties (TAAs). We report our early experience, complications, and radiological and functional outcomes. METHODS: Patients were recruited from 11 specialist centres between June 2016 and November 2019. Demographic, radiological, and functional outcome data (Ankle Osteoarthritis Scale, Manchester Oxford Questionnaire, and EuroQol five-dimension five-level score) were collected preoperatively, at six months, one year, and two years. The Canadian Orthopaedic Foot and Ankle Society (COFAS) grading system was used to stratify deformity. Early and late complications and reoperations were recorded as adverse events. Radiographs were assessed for lucencies, cysts, and/or subsidence. RESULTS: In all, 500 patients reached six-month follow-up, 420 reached one-year follow-up, and 188 reached two-year follow-up. The mean age was 67.8 years (23.9 to 88.5). A total of 38 patients (7.5%) presented with inflammatory arthritis. A total of 101 (20.0%) of implantations used patient-specific instrumentation; 167 patients (33.1%) underwent an additional procedure at the time of surgery. A total of seven patients died of unrelated causes, two withdrew, and one was lost to follow-up. The mean follow-up was 16.2 months (6 to 36). There was a significant improvement from baseline across all functional outcome scores at six months, one, and two years. There was no significant difference in outcomes with the use of patient-specific instrumentation, type of arthritis, or COFAS type. Five (1.0%) implants were revised. The overall complication rate was 8.8%. The non-revision reoperation rate was 1.4%. The 30-day readmission rate was 1.2% and the one-year mortality 0.74%. CONCLUSION: The early experience and complications reported in this study support the current use of the INFINITY TAA as a safe and effective implant in the treatment of end-stage ankle arthritis. Cite this article: Bone Joint J 2021;103-B(7):1270-1276.


Subject(s)
Arthroplasty, Replacement, Ankle/methods , Patient Reported Outcome Measures , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Postoperative Complications/diagnostic imaging , Prospective Studies , Quality of Life , Recovery of Function , Reoperation/statistics & numerical data , Surveys and Questionnaires , United Kingdom
6.
Sci Total Environ ; 779: 146318, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34030223

ABSTRACT

Nitrous oxide (N2O) is a strong greenhouse gas produced by biotic/abiotic processes directly linked to both fungal and prokaryotic communities that produce, consume or create conditions leading to its emission. In soils exposed to nitrogen (N) in the form of urea, an ecological succession is triggered resulting in a dynamic turnover of microbial populations. However, knowledge of the mechanisms controlling this succession and the repercussions for N2O emissions remain incomplete. Here, we monitored N2O production and fungal/prokaryotic community changes (via 16S and 18S amplicon sequencing) in soil microcosms exposed to urea. Contributions of microbes to emissions were determined using biological inhibitors. Results confirmed that urea leads to shifts in microbial community assemblages by selecting for certain microbial groups (fast growers) as dictated through life history strategies. Urea reduced overall community diversity by conferring dominance to specific groups at different stages in the succession. The diversity lost under urea was recovered with inhibitor addition through the removal of groups that were actively growing under urea indicating that species replacement is mediated in part by competition. Results also identified fungi as significant contributors to N2O emissions, and demonstrate that dominant fungal populations are consistently replaced at different stages of the succession. These successions were affected by addition of inhibitors which resulted in strong decreases in N2O emissions, suggesting that fungal contributions to N2O emissions are larger than that of prokaryotes.


Subject(s)
Greenhouse Gases , Denitrification , Nitrogen/analysis , Nitrous Oxide/analysis , Soil , Soil Microbiology
7.
Bone Joint J ; 103-B(4): 696-703, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33789488

ABSTRACT

AIMS: We report the medium-term outcomes of a consecutive series of 118 Zenith total ankle arthroplasties (TAAs) from a single, non-designer centre. METHODS: Between December 2010 and May 2016, 118 consecutive Zenith prostheses were implanted in 114 patients. Demographic, clinical, and patient-reported outcome measures (PROMs) data were collected. The endpoint of the study was failure of the implant requiring revision of one or all of the components. Kaplan-Meier survival curves were generated with 95% confidence intervals (CIs) and the rate of failure calculated for each year. RESULTS: Eight patients (ten ankles) died during follow-up, but none required revision. Of the surviving 106 patients (108 ankles: rheumatoid arthritis (RA), n = 15; osteoarthritis (OA), n = 93), 38 were women and 68 were men, with a mean age of 68.2 years (48 to 86) at the time of surgery. Mean follow-up was 5.1 years (2.1 to 9.0). A total of ten implants failed (8.5%), thus requiring revision. The implant survival at seven years, using revision as an endpoint, was 88.2% (95% CI 100% to 72.9%). There was a mean improvement in Manchester-Oxford Foot and Ankle Questionnaire (MOXFQ) from 85.0 to 32.8 and visual analogue scale (VAS) scores from 7.0 to 3.2, and overall satisfaction was 89%. The three commonest complications were malleolar fracture (14.4%, n = 17), wound healing (13.6%, n = 16), and superficial infection (12.7%, n = 15). The commonest reason for revision was aseptic loosening. No patients in our study were revised for deep infection. CONCLUSION: Our results show that Zenith survival rates are comparable with those in the literature for other implants and in the National Joint Registry (NJR). Overall patient satisfaction was high as were functional outcomes. However, the data highlight potential complications associated with this surgery. The authors believe that these figures support ankle arthroplasty as an option in the treatment of ankle arthritis. Cite this article: Bone Joint J 2021;103-B(4):696-703.


Subject(s)
Arthroplasty, Replacement, Ankle/methods , Patient Reported Outcome Measures , Aged , Aged, 80 and over , Arthritis, Rheumatoid/surgery , Female , Humans , Joint Prosthesis , Male , Middle Aged , Osteoarthritis/surgery , Postoperative Complications/epidemiology , Prosthesis Failure , Reoperation/statistics & numerical data , United Kingdom/epidemiology
8.
Bone Jt Open ; 1(9): 556-561, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33215154

ABSTRACT

AIMS: The exact risk to patients undergoing surgery who develop COVID-19 is not yet fully known. This study aims to provide the current data to allow adequate consent regarding the risks of post-surgery COVID-19 infection and subsequent COVID-19-related mortality. METHODS: All orthopaedic trauma cases at the Wrightington Wigan and Leigh NHS Foundation Trust from 'lockdown' (23 March 2020) to date (15 June 2020) were collated and split into three groups. Adult ambulatory trauma surgeries (upper limb trauma, ankle fracture, tibial plateau fracture) and regional-specific referrals (periprosthetic hip fracture) were performed at a stand-alone elective site that accepted COVID-19-negative patients. Neck of femur fractures (NOFF) and all remaining non-NOFF (paediatric trauma, long bone injury) surgeries were performed at an acute site hospital (mixed green/blue site). Patients were swabbed for COVID-19 before surgery on both sites. Age, sex, nature of surgery, American Society of Anaesthesiologists (ASA) grade, associated comorbidity, length of stay, development of post-surgical COVID-19 infection, and post-surgical COVID-19-related deaths were collected. RESULTS: At the elective site, 225 patients underwent orthopaedic trauma surgery; two became COVID-19-positive (0.9%) in the immediate perioperative period, neither of which was fatal. At the acute site, 93 patients underwent non-NOFF trauma surgery, of whom six became COVID-19-positive (6.5%) and three died. A further 84 patients underwent NOFF surgery, seven becoming COVID-19 positive (8.3%) and five died. CONCLUSION: At the elective site, the rate of COVID-19 infection following orthopaedic trauma surgery was low, at 0.9%. At the acute mixed site (typical district general hospital), for non-NOFF surgery there was a 6.5% incidence of post-surgical COVID-19 infection (seven-fold higher risk) with 50% COVID-19 mortality; for NOFF surgery, there was an 8.3% incidence of post-surgical COVID-19 infection, with 71% COVID-19 mortality. This is likely to have significance when planning a resumption of elective orthopaedic surgery and for consent to the patient.Cite this article: Bone Joint Open 2020;1-9:556-561.

9.
J Environ Qual ; 49(5): 1081-1091, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33016440

ABSTRACT

Terrestrial ecosystems, both natural ecosystems and agroecosystems, generate greenhouse gases (GHGs). The chamber method is the most common method to quantify GHG fluxes from soil-plant systems and to better understand factors affecting their generation and mitigation. The objective of this study was to review and synthesize literature on chamber designs (non-flow-through, non-steady-state chamber) and associated factors that affect GHG nitrous oxide (N2 O) flux measurement when using chamber methods. Chamber design requires consideration of many facets that include materials, insulation, sealing, venting, depth of placement, and the need to maintain plant growth and activity. Final designs should be tailored, and bench tested, in order to meet the nuances of the experimental objectives and the ecosystem under study while reducing potential artifacts. Good insulation, to prevent temperature fluctuations and pressure changes, and a high-quality seal between base and chamber are essential. Elimination of pressure differentials between headspace and atmosphere through venting should be performed, and designs now exist to eliminate Venturi effects of earlier tube-type vent designs. The use of fans within the chamber headspace increases measurement precision but may alter the flux. To establish best practice recommendations when using fans, further data are required, particularly in systems containing tall plants, to systematically evaluate the effects that fan speed, position, and mixing rate have on soil gas flux.


Subject(s)
Ecosystem , Methane/analysis , Carbon Dioxide/analysis , Environmental Monitoring , Nitrous Oxide/analysis
10.
Bone Joint J ; 102-B(2): 220-226, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32009425

ABSTRACT

AIMS: Arthroplasty for end-stage hallux rigidus (HR) is controversial. Arthrodesis remains the gold standard for surgical treatment, although is not without its complications, with rates of up to 10% for nonunion, 14% for reoperation and 10% for metatarsalgia. The aim of this study was to analyze the outcome of a double-stemmed silastic implant (Wright-Medical, Memphis, Tennessee, USA) for patients with end-stage HR. METHODS: We conducted a retrospective review of 108 consecutive implants in 76 patients, between January 2005 and December 2016, with a minimum follow-up of two years. The mean age of the patients at the time of surgery was 61.6 years (42 to 84). There were 104 females and four males. Clinical, radiological, patient reported outcome measures (PROMS) data, a visual analogue score (VAS) for pain, and satisfaction scores were collected. RESULTS: The survivorship at a mean follow-up of 5.3 years (2.1 to 14.1) was 97.2%. The mean Manchester Oxford Foot and Ankle Questionnaire (MOXFQ) scores improved from 78.1 to 11.0, and VAS scores for pain from 7/10 to 1.3/10. The rate of satisfaction was 90.6%. Three implants (2.8%) required revision; one for infection, one-month postoperatively, and two for stem breakage at 10.4 and 13.3 years postoperatively. There was a 1.9% reoperation rate other than revision, 23.1% of patients developed a minor complication, and 21.1% of patients had non-progressive and asymptomatic cysts on radiological review. CONCLUSION: We report a 97.2% survivorship at a mean follow-up of 5.3 years with this implant. We did not find progressive osteolysis, as has been previously reported. These results suggest that this double-stemmed silastic implant provides a predictable and reliable alternative with comparable outcomes to arthrodesis for the treatment of end-stage HR. Cite this article: Bone Joint J 2020;102-B(2):220-226.


Subject(s)
Arthroplasty, Replacement/methods , Hallux Rigidus/surgery , Joint Prosthesis , Metatarsophalangeal Joint/surgery , Adult , Aged , Aged, 80 and over , Biocompatible Materials , Dimethylpolysiloxanes , Female , Humans , Male , Middle Aged , Retrospective Studies
11.
Foot Ankle Surg ; 26(4): 405-411, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31142440

ABSTRACT

BACKGROUND: Biophysical methods including Low Intensity Pulsed Ultrasound (LIPUS) are emerging as potential alternatives to revision surgery for treating established nonunions. We aim to prospectively review the clinical and patient-reported outcomes of patients treated with LIPUS following post-traumatic and post-surgical nonunions in the foot and ankle. METHODS: Forty-seven consecutive patients underwent Exogen treatment. Patient-reported outcome scores included MOXFQ, EQ-5D and VAS. Patients were divided in to 3 groups: fractures (A), hindfoot procedures (B) and midfoot/forefoot procedures (C). RESULTS: Thirty-seven patients (78.7%) clinically united, 4 patients (8.5%) noticed no significant improvement but did not want further intervention and 6 patients (12.8%) underwent revision surgery. The mean duration of Exogen treatment was 6 months. Union rates of 93%, 67% and 78% were noted in the three groups. Significant improvement in functional outcomes and potential cost savings were observed. CONCLUSIONS: Exogen for established nonunion in the foot and ankle is a safe, valuable and economically viable clinical option as an alternative to revision surgery. We observed better results in the fracture and midfoot/forefoot groups and relatively poorer results in the hindfoot fusion group.


Subject(s)
Ankle Fractures/therapy , Ankle Joint/diagnostic imaging , Fracture Fixation, Internal/adverse effects , Fractures, Ununited/therapy , Patient Reported Outcome Measures , Postoperative Complications/therapy , Ultrasonic Therapy/methods , Ankle Fractures/diagnosis , Female , Fractures, Bone/surgery , Fractures, Ununited/diagnosis , Humans , Male , Middle Aged , Postoperative Complications/diagnosis , Time Factors , Tomography, X-Ray Computed , Treatment Outcome , Ultrasonic Waves
12.
Sci Rep ; 9(1): 13371, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527802

ABSTRACT

Ruminant urine patches on grazed grassland are a significant source of agricultural nitrous oxide (N2O) emissions. Of the many biotic and abiotic N2O production mechanisms initiated following urine-urea deposition, codenitrification resulting in the formation of hybrid N2O, is one of the least understood. Codenitrification forms hybrid N2O via biotic N-nitrosation, co-metabolising organic and inorganic N compounds (N substrates) to produce N2O. The objective of this study was to assess the relative significance of different N substrates on codenitrification and to determine the contributions of fungi and bacteria to codenitrification. 15N-labelled ammonium, hydroxylamine (NH2OH) and two amino acids (phenylalanine or glycine) were applied, separately, to sieved soil mesocosms eight days after a simulated urine event, in the absence or presence of bacterial and fungal inhibitors. Soil chemical variables and N2O fluxes were monitored and the codenitrified N2O fluxes determined. Fungal inhibition decreased N2O fluxes by ca. 40% for both amino acid treatments, while bacterial inhibition only decreased the N2O flux of the glycine treatment, by 14%. Hydroxylamine (NH2OH) generated the highest N2O fluxes which declined with either fungal or bacterial inhibition alone, while combined inhibition resulted in a 60% decrease in the N2O flux. All the N substrates examined participated to some extent in codenitrification. Trends for codenitrification under the NH2OH substrate treatment followed those of total N2O fluxes (85.7% of total N2O flux). Codenitrification fluxes under non-NH2OH substrate treatments (0.7-1.2% of total N2O flux) were two orders of magnitude lower, and significant decreases in these treatments only occurred with fungal inhibition in the amino acid substrate treatments. These results demonstrate that in situ studies are required to better understand the dynamics of codenitrification substrates in grazed pasture soils and the associated role that fungi have with respect to codenitrification.


Subject(s)
Denitrification/physiology , Nitrogen/metabolism , Soil Microbiology , Agriculture , Bacteria/metabolism , Fungi/metabolism , Grassland , Nitrogen Compounds/metabolism , Nitrous Oxide/metabolism , Soil/chemistry
13.
Mol Cell Proteomics ; 18(9): 1836-1850, 2019 09.
Article in English | MEDLINE | ID: mdl-31289117

ABSTRACT

Protein biomarkers for epithelial ovarian cancer are critical for the early detection of the cancer to improve patient prognosis and for the clinical management of the disease to monitor treatment response and to detect recurrences. Unfortunately, the discovery of protein biomarkers is hampered by the limited availability of reliable and sensitive assays needed for the reproducible quantification of proteins in complex biological matrices such as blood plasma. In recent years, targeted mass spectrometry, exemplified by selected reaction monitoring (SRM) has emerged as a method, capable of overcoming this limitation. Here, we present a comprehensive SRM-based strategy for developing plasma-based protein biomarkers for epithelial ovarian cancer and illustrate how the SRM platform, when combined with rigorous experimental design and statistical analysis, can result in detection of predictive analytes.Our biomarker development strategy first involved a discovery-driven proteomic effort to derive potential N-glycoprotein biomarker candidates for plasma-based detection of human ovarian cancer from a genetically engineered mouse model of endometrioid ovarian cancer, which accurately recapitulates the human disease. Next, 65 candidate markers selected from proteins of different abundance in the discovery dataset were reproducibly quantified with SRM assays across a large cohort of over 200 plasma samples from ovarian cancer patients and healthy controls. Finally, these measurements were used to derive a 5-protein signature for distinguishing individuals with epithelial ovarian cancer from healthy controls. The sensitivity of the candidate biomarker signature in combination with CA125 ELISA-based measurements currently used in clinic, exceeded that of CA125 ELISA-based measurements alone. The SRM-based strategy in this study is broadly applicable. It can be used in any study that requires accurate and reproducible quantification of selected proteins in a high-throughput and multiplexed fashion.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Ovarian Epithelial/blood , Mass Spectrometry/methods , Ovarian Neoplasms/blood , Proteomics/methods , Animals , Antigens, Neoplasm/blood , Blood Proteins/analysis , CA-125 Antigen/blood , Case-Control Studies , Cohort Studies , Desmoglein 2/blood , Female , Heavy Chain Disease/blood , Humans , Immunoglobulin mu-Chains/blood , Membrane Proteins/blood , Mice, Transgenic , Neural Cell Adhesion Molecule L1/blood , Sensitivity and Specificity , Thrombospondin 1/blood
14.
Vasc Med ; 24(5): 414-421, 2019 10.
Article in English | MEDLINE | ID: mdl-31277561

ABSTRACT

Extensive atherosclerotic plaque burden in the lower extremities often leads to symptomatic peripheral artery disease (PAD) including impaired walking performance and claudication. Interleukin-1ß (IL-1ß) may play an important pro-inflammatory role in the pathogenesis of this disease. Interruption of IL-1ß signaling was hypothesized to decrease plaque progression in the leg macrovasculature and improve the mobility of patients with PAD with intermittent claudication. Thirty-eight patients (mean age 65 years; 71% male) with symptomatic PAD (confirmed by ankle-brachial index) were randomized 1:1 to receive canakinumab (150 mg subcutaneously) or placebo monthly for up to 12 months. The mean vessel wall area (by 3.0 T black-blood magnetic resonance imaging (MRI)) of the superficial femoral artery (SFA) was used to measure plaque volume. Mobility was assessed using the 6-minute walk test. Canakinumab was safe and well tolerated. Markers of systemic inflammation (interleukin-6 and high-sensitivity C-reactive protein) fell as early as 1 month after treatment. MRI (32 patients at 3 months; 21 patients at 12 months) showed no evidence of plaque progression in the SFA in either placebo-treated or canakinumab-treated patients. Although an exploratory endpoint, placebo-adjusted maximum and pain-free walking distance (58 m) improved as early as 3 months after treatment with canakinumab when compared with placebo. Although canakinumab did not alter plaque progression in the SFA, there is an early signal that it may improve maximum and pain-free walking distance in patients with symptomatic PAD. Larger studies aimed at this endpoint will be required to definitively demonstrate this. ClinicalTrials.gov Identifier: NCT01731990.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Intermittent Claudication/drug therapy , Peripheral Arterial Disease/drug therapy , Aged , Anti-Inflammatory Agents/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Biomarkers/blood , Double-Blind Method , Exercise Tolerance/drug effects , Female , Germany , Humans , Inflammation Mediators/blood , Intermittent Claudication/blood , Intermittent Claudication/diagnosis , Intermittent Claudication/physiopathology , Jordan , Male , Middle Aged , Peripheral Arterial Disease/blood , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/physiopathology , Proof of Concept Study , Prospective Studies , Recovery of Function , Time Factors , Treatment Outcome , United States
15.
J Environ Qual ; 47(4): 812-819, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30025055

ABSTRACT

Urea, the dominant form of N in ruminant urine, degrades in soil to produce NO emissions. However, the fate of non-urea urine N compounds (NUNCs) in soil and their contribution to urine patch NO emissions remain unclear. This study evaluated five NUNCs: allantoin (10%), creatinine (3%), creatine (3%), uric acid (1%), and (hypo)xanthine (0.6%), where numbers in parentheses represent the average percentage of total urine N. The fates of NUNCs in a pasture soil were determined using N-labeled NUNCs in a laboratory trial. Two NUNCs, hypoxanthine and creatine, were added to the soil with perennial ryegrass ( L.) present and sampled over time for soil inorganic N, NO emissions, and plant N dynamics. The N enrichments of soil inorganic N and plant N were significantly increased within 24 h of NUNC application, indicating rapid microbial degradation and plant uptake of NUNCs in pasture soil. An autumn field trial was also conducted to evaluate the in situ impact of varying concentrations of NUNCs on urine patch NO emissions. Increasing the proportion of urine N excreted as NUNCs did not alter the urine patch NO emission factor, soil inorganic N concentrations, or plant N uptake. It is concluded that NUNCs rapidly degrade in pasture soil and that an increased ruminant excretion of urine N as NUNCs does not significantly alter the urine patch NO emission factor.


Subject(s)
Nitrous Oxide/analysis , Ruminants , Urine/chemistry , Animals , Lolium , Nitrogen , Soil , Urea/metabolism
16.
Sci Rep ; 8(1): 4363, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29515219

ABSTRACT

A correction has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

17.
Mol Ecol ; 26(20): 5500-5514, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28752622

ABSTRACT

The nitrogen (N) cycle represents one of the most well-studied systems, yet the taxonomic diversity of the organisms that contribute to it is mostly unknown, or linked to poorly characterized microbial groups. While new information has allowed functional groups to be refined, they still rely on a priori knowledge of enzymes involved and the assumption of functional conservation, with little connection to the role the transformations, plays for specific organisms. Here, we use soil microcosms to test the impact of N deposition on prokaryotic communities. By combining chemical, genomic and transcriptomic analysis, we are able to identify and link changes in community structure to specific organisms catalysing given chemical reactions. Urea deposition led to a decrease in prokaryotic richness, and a shift in community composition. This was driven by replacement of stable native populations, which utilize energy from N-linked redox reactions for physiological maintenance, with fast responding populations that use this energy for growth. This model can be used to predict response to N disturbances and allows us to identify putative life strategies of different functional and taxonomic groups, thus providing insights into how they persist in ecosystems by niche differentiation.


Subject(s)
Bacteria/metabolism , Nitrogen Cycle , Nitrogen/chemistry , Soil Microbiology , Soil/chemistry , Bacteria/classification , Ecosystem , Fertilizers , Hydrogen-Ion Concentration , Ireland , Models, Biological , Operon , Oxidation-Reduction , RNA, Ribosomal, 16S/isolation & purification , Urea/chemistry
18.
J Environ Qual ; 46(3): 514-521, 2017 May.
Article in English | MEDLINE | ID: mdl-28724090

ABSTRACT

Acidification of livestock manure can reduce emission of the greenhouse gases methane (CH) and nitrous oxide (NO), as well as ammonia (NH). We examined the relation between emission of these gases and transformation of organic matter as affected by acidification. Liquid cattle manure was acidified with sulfuric acid to pH 5.5 at a pilot scale (100 L), and we measured effects on CH, NO, CO and NH emissions and on transformation of pH buffer components and organic matter. Acidification reduced NH emissions by 62% (47 d) and emission of CH by 68% (57 d). Emissions of NO were negligible, probably due to the absence of a surface crust. Reductions in NH and CH emission were highest at the start but declined over time concomitantly with a gradual increase in the stored liquid manure pH. Acidification did not significantly affect CO emissions. Emission of CO was high, five- to ten-fold of CH emissions, until Day 16 of storage, after which the CO emission rate declined to around twice the CH emission rate; consequently, the majority of C loss during the early stages of storage was CO. Cumulative emission of C in CO and CH closely matched depletion of dissolved organic carbon (DOC), suggesting that DOC may be a predictor for CH emission from dilute slurries. volatile fatty acid and total ammoniacal nitrogen concentrations in surface layers were substantially higher than at the center of stored liquid manure, perhaps resulting from microbial activity at the surface. This pattern deserves attention when predicting NH emission from stored slurry.


Subject(s)
Ammonia/analysis , Manure , Methane/analysis , Animals , Cattle , Gases , Hydrogen-Ion Concentration , Nitrous Oxide
19.
J Environ Qual ; 46(3): 481-489, 2017 May.
Article in English | MEDLINE | ID: mdl-28724106

ABSTRACT

Biosolids disposal to landfill or through incineration is wasteful of a resource that is rich in organic matter and plant nutrients. Land application can improve soil fertility and enhance crop production but may result in excessive nitrate N (NO-N) leaching and residual contamination from pathogens, heavy metals, and xenobiotics. This paper evaluates evidence that these concerns can be reduced significantly by blending biosolids with organic materials to reduce the environmental impact of biosolids application to soils. It appears feasible to combine organic waste streams for use as a resource to build or amend degraded soils. Sawdust and partially pyrolyzed biochars provide an opportunity to reduce the environmental impact of biosolids application, with studies showing reductions of NO-N leaching of 40 to 80%. However, other organic amendments including lignite coal waste may result in excessive NO-N leaching. Field trials combining biosolids and biochars for rehabilitation of degraded forest and ecological restoration are recommended.


Subject(s)
Metals, Heavy/analysis , Plants , Coal , Soil , Soil Pollutants
20.
Sci Rep ; 7(1): 2185, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28526821

ABSTRACT

Intensively managed agricultural pastures contribute to N2O and N2 fluxes resulting in detrimental environmental outcomes and poor N use efficiency, respectively. Besides nitrification, nitrifier-denitrification and heterotrophic denitrification, alternative pathways such as codenitrification also contribute to emissions under ruminant urine-affected soil. However, information on codenitrification is sparse. The objectives of this experiment were to assess the effects of soil moisture and soil inorganic-N dynamics on the relative contributions of codenitrification and denitrification (heterotrophic denitrification) to the N2O and N2 fluxes under a simulated ruminant urine event. Repacked soil cores were treated with 15N enriched urea and maintained at near saturation (-1 kPa) or field capacity (-10 kPa). Soil inorganic-N, pH, dissolved organic carbon, N2O and N2 fluxes were measured over 63 days. Fluxes of N2, attributable to codenitrification, were at a maximum when soil nitrite (NO2-) concentrations were elevated. Cumulative codenitrification was higher (P = 0.043) at -1 kPa. However, the ratio of codenitrification to denitrification did not differ significantly with soil moisture, 25.5 ± 15.8 and 12.9 ± 4.8% (stdev) at -1 and -10 kPa, respectively. Elevated soil NO2- concentrations are shown to contribute to codenitrification, particularly at -1 kPa.

SELECTION OF CITATIONS
SEARCH DETAIL
...