Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(4): 045120, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32357726

ABSTRACT

We describe a new tunable diode laser (TDL) absorption instrument, the Chicago Water Isotope Spectrometer, designed for measurements of vapor-phase water isotopologues in conditions characteristic of the upper troposphere [190-235 K temperature and 2-500 parts per million volume (ppmv) water vapor]. The instrument is primarily targeted for measuring the evolving ratio of HDO/H2O during experiments in the "Aerosol Interaction and Dynamics in the Atmosphere" (AIDA) cloud chamber. The spectrometer scans absorption lines of both H2O and HDO near the 2.64 µm wavelength in a single current sweep, increasing the accuracy of isotopic ratio measurements. At AIDA, the instrument is configured with a 256-m path length White cell for in situ measurements, and effective sensitivity can be augmented by enhancing the HDO content of chamber water vapor by an order of magnitude. The instrument has participated to date in the 2012-2013 IsoCloud campaigns studying isotopic partitioning during the formation of cirrus clouds and in the AquaVIT-II instrument intercomparison campaign. Realized precisions for 1-s measurements during these campaigns were 22 ppbv for H2O and 16 ppbv for HDO, equivalent to relative precisions of less than 0.5% for each species at 8 ppmv water vapor. The 1-s precision of the [HDO]/[H2O] ratio measurement ranged from 1.6‰ to 5.6‰ over the range of experimental conditions. H2O measurements showed agreement with calculated saturation vapor pressure to within 1% in conditions of sublimating ice and agreement with other AIDA instruments (the AIDA SP-APicT reference TDL instrument and an MBW 373LX chilled mirror hygrometer) to within 2.5% and 3.8%, respectively, over conditions suitable for all instruments (temperatures from 204 K to 234 K and H2O content equivalent to 15-700 ppmv at 200 hPa).

2.
Appl Opt ; 57(21): 6252-6259, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30118006

ABSTRACT

We show that the introduction of a non-axially-symmetric optical component can significantly improve light collection in instruments that use off-axis integrated cavity output spectroscopy (OA-ICOS). OA-ICOS is a robust technique for field measurements of scarce trace gases, but the inherent skewness of its output makes light collection onto small detectors difficult. Here, we derive the constraining effect of skewness in OA-ICOS cavities with Herriott alignments, and show how this constraint can be overcome by the addition of a non-axially-symmetric optical component. We describe such a component consisting of eight ZnSe wedges designed for the OA-ICOS-based Chicago Water Isotope Spectrometer, and show that this component increases the instrument's signal-to-noise ratio by a factor of three. The ratio of improvement is expected to be even larger in compact OA-ICOS instruments.

3.
Proc Natl Acad Sci U S A ; 114(22): 5612-5617, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28495968

ABSTRACT

The stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (-40 °C), conditions necessary to form cirrus clouds in the Earth's atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief [Merlivat L, Nief G (1967) Tellus 19:122-127]. Nonequilibrium kinetic effects that should alter preferential partitioning have also not been well characterized experimentally. We present here direct measurements of HDO/H2O equilibrium fractionation between vapor and ice ([Formula: see text]) at cirrus-relevant temperatures, using in situ spectroscopic measurements of the evolving isotopic composition of water vapor during cirrus formation experiments in a cloud chamber. We rule out the recent proposed upward modification of [Formula: see text], and find values slightly lower than Merlivat and Nief. These experiments also allow us to make a quantitative validation of the kinetic modification expected to occur in supersaturated conditions in the ice-vapor system. In a subset of diffusion-limited experiments, we show that kinetic isotope effects are indeed consistent with published models, including allowing for small surface effects. These results are fundamental for inferring processes on Earth and other planets from water isotopic measurements. They also demonstrate the utility of dynamic in situ experiments for studying fractionation in geochemical systems.

SELECTION OF CITATIONS
SEARCH DETAIL