Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 136(14): 144312, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22502523

ABSTRACT

The pure rotational spectrum of the PCN radical (X(3)Σ(-)) has been measured for the first time using a combination of millimeter/submillimeter direct absorption and Fourier transform microwave (FTMW) spectroscopy. In the millimeter instrument, PCN was created by the reaction of phosphorus vapor and cyanogen in the presence of an ac discharge. A pulsed dc discharge of a dilute mixture of PCl(3) vapor and cyanogen in argon was the synthetic method employed in the FTMW machine. Twenty-seven rotational transitions of PCN and six of P(13)CN in the ground vibrational state were recorded from 19 to 415 GHz, all which exhibited fine structure arising from the two unpaired electrons in this radical. Phosphorus and nitrogen hyperfine splittings were also resolved in the FTMW data. Rotational satellite lines from excited vibrational states with v(2) = 1-3 and v(1) = 1 were additionally measured in the submillimeter range. The data were analyzed with a Hund's case (b) effective Hamiltonian and rotational, fine structure, and hyperfine constants were determined. From the rotational parameters of both carbon isotopologues, the geometry of PCN was established to be linear, with a P-C single bond and a C-N triple bond, structurally comparable to other non-metal main group heteroatom cyanides. Analysis of the hyperfine constants suggests that the two unpaired electrons reside almost exclusively on the phosphorus atom in a π(2) configuration, with little interaction with the nitrogen nucleus. The fine structure splittings in the vibrational satellite lines differ significantly from the pattern of the ground state, with the effect most noticeable with increasing v(2) quantum number. These deviations likely result from spin-orbit vibronic perturbations from a nearby (1)Σ(+) state, suggested by the data to lie ~12,000 cm(-1) above the ground state.

2.
J Chem Phys ; 134(13): 134302, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21476750

ABSTRACT

The pure rotational spectrum of HPS, as well as its (34)S and D isotopologues, has been recorded at microwave, millimeter, and submillimeter wavelengths, the first observation of this molecule in the gas phase. The data were obtained using a combination of millimeter direct absorption, Fourier transform microwave (FTMW), and microwave-microwave double-resonance techniques, which cover the total frequency range from 15 to 419 GHz. Quantum chemical calculations at the B3LYP and CCSD(T) levels were also performed to aid in spectral identification. HPS was created in the direct absorption experiment from a mixture of elemental phosphorus, H(2)S, and Ar carrier gas; DPS was produced by adding D(2). In the FTMW study, these species were generated in a pulsed discharge nozzle from PH(3) and H(2)S or D(2)S, diluted in neon. The spectra recorded for HPS and its isotopologues exhibit clear asymmetric top patterns indicating bent structures; phosphorus hyperfine splittings were also observed in HPS, but not DPS. Analysis of the data yielded rotation, centrifugal distortion, and phosphorus nuclear spin-rotation parameters for the individual species. The r(m) ((1)) structure for HPS, calculated from the rotational constants, is r(H-P) = 1.438(1) Å, r(P-S) = 1.9320(1) Å, and θ(H-P-S) = 101.85(9)°. Empirically correcting for zero-point vibrational effects yields the geometry r(e)(H-P) = 1.4321(2) Å, r(e)(P-S) = 1.9287(1) Å, and θ(e)(H-P-S) = 101.78(1)°, in close agreement with the r(m) ((1)) structure. A small inertial defect was found for HPS indicating a relatively rigid molecule. Based on these data, the bonding in this species is best represented as H-P=S, similar to the first-row analog HNO, as well as HNS and HPO. Therefore, substitution of phosphorus and sulfur for nitrogen and oxygen does not result in a dramatic structural change.

3.
J Chem Phys ; 133(17): 174301, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-21054026

ABSTRACT

The pure rotational spectrum of CuCCH in its ground electronic state (X̃ (1)Σ(+)) has been measured in the frequency range of 7-305 GHz using Fourier transform microwave (FTMW) and direct absorption millimeter/submillimeter methods. This work is the first spectroscopic study of CuCCH, a model system for copper acetylides. The molecule was synthesized using a new technique, discharge assisted laser ablation spectroscopy (DALAS). Four to five rotational transitions were measured for this species in six isotopologues ((63)CuCCH, (65)CuCCH, (63)Cu(13)CCH, (63)CuC(13)CH, (63)Cu(13)C(13)CH, and (63)CuCCD); hyperfine interactions arising from the copper nucleus were resolved, as well as smaller splittings in CuCCD due to deuterium quadrupole coupling. Five rotational transitions were also recorded in the millimeter region for (63)CuCCH and (65)CuCCH, using a Broida oven source. The combined FTMW and millimeter spectra were analyzed with an effective Hamiltonian, and rotational, electric quadrupole (Cu and D) and copper nuclear spin-rotation constants were determined. From the rotational constants, an r(m)(2) structure for CuCCH was established, with r(Cu-C) = 1.8177(6) Å, r(C-C) = 1.2174(6) Å, and r(C-H) = 1.046(2) Å. The geometry suggests that CuCCH is primarily a covalent species with the copper atom singly bonded to the C≡C-H moiety. The copper quadrupole constant indicates that the bonding orbital of this atom may be sp hybridized. The DALAS technique promises to be fruitful in the study of other small, metal-containing molecules of chemical interest.

4.
J Chem Phys ; 131(22): 224317, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20001046

ABSTRACT

The pure rotational spectrum of the CCAs radical in its ground electronic and spin state, X (2)Pi(12), has been measured using Fourier transform microwave techniques in the frequency range of 12-40 GHz. This species was created in a supersonic expansion from a reaction mixture of AsCl(3) and C(2)H(2) or CH(4) diluted in high pressure argon, using a pulsed nozzle containing a dc discharge source. Three rotational transitions were measured for the main isotopologue, (12)C(12)CAs, in the Omega=12 ladder; both lambda-doubling and arsenic (I=32) hyperfine interactions were observed in these spectra. In addition, two to four rotational transitions were recorded for the (13)C(13)CAs, (13)C(12)CAs, and (12)C(13)CAs species. In these three isotopologues, hyperfine splittings were also resolved arising from the (13)C nuclei (I=12), creating complex spectral patterns. The CCAs spectra were analyzed with a case (a) Hamiltonian, and effective rotational, lambda-doubling, and arsenic and carbon-13 hyperfine constants were determined for the Omega=12 ladder. From the effective rotational constants of the four isotopologues, an r(m) ((1)) structure has been derived with r(C-C)=1.287 A and r(C-As)=1.745 A. These bond lengths indicate that the predominant structure for arsenic dicarbide is C=C=As, with some contributing C[Triple Bond]C and C[Triple Bond]As triple bond characters. The hyperfine constants established in this work indicate that about 23 of the unpaired electron density lies on the arsenic atom, with the remaining percentage on the terminal carbon. The value of the arsenic quadrupole coupling constant (eqQ=-202 MHz) suggests that the As-C bond has a mixture of covalent and ionic characters, consistent with theoretical predictions that both pi backbonding and electron transfer play a role in creating a linear, as opposed to a cyclic, structure for certain heteroatom dicarbides.

5.
J Chem Phys ; 130(1): 014305, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-19140613

ABSTRACT

The pure rotational spectrum of CCP (X (2)Pi(r)) has been measured at microwave, millimeter, and submillimeter wavelengths (17-545 GHz), along with its (13)C isotopologues ((13)C(13)CP, C(13)CP, and (13)CCP). The spectra of these species were recorded using a combination of millimeter/submillimeter direct absorption methods and Fourier transform microwave (FTMW) techniques. The phosphorus dicarbides were created in the gas phase from the reaction of red phosphorus and acetylene or methane in argon in an ac discharge for the direct absorption experiments, and using PCl(3) as the phosphorus source in a pulsed dc nozzle discharge for the FTMW measurements. A total of 35 rotational transitions were recorded for the main isotopologue, and between 2 and 8 for the (13)C-substituted species. Both spin-orbit components were identified for CCP, while only the Omega = 12 ladder was observed for (13)C(13)CP, C(13)CP, and (13)CCP. Hyperfine splittings due to phosphorus were observed for each species, as well as carbon-13 hyperfine structure for each of the (13)C-substituted isotopologues. The data were fitted with a Hund's case (a) Hamiltonian, and rotational, fine structure, and hyperfine parameters were determined for each species. The r(m)(1) bond lengths established for CCP, r(C-C) = 1.289(1) A and r(C-P) = 1.621(1) A, imply that there are double bonds between both the two carbon atoms and the carbon and phosphorus atoms. The hyperfine constants suggest that the unpaired electron in this radical is primarily located on the phosphorus nucleus, but with some electron density also on the terminal carbon atom. There appears to be a minor resonance structure where the unpaired electron is on the nucleus of the end carbon. The multiple double bond structure forces the molecule to be linear, as opposed to other main group dicarbides, such as SiC(2), which have cyclic geometries.

SELECTION OF CITATIONS
SEARCH DETAIL
...