Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 501, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479249

ABSTRACT

DNA-PAINT is a versatile optical super-resolution technique relying on the transient binding of fluorescent DNA 'imagers' to target epitopes. Its performance in biological samples is often constrained by strong background signals and non-specific binding events, both exacerbated by high imager concentrations. Here we describe Repeat DNA-PAINT, a method that enables a substantial reduction in imager concentration, thus suppressing spurious signals. Additionally, Repeat DNA-PAINT reduces photoinduced target-site loss and can accelerate sampling, all without affecting spatial resolution.


Subject(s)
DNA/chemistry , Microscopy, Fluorescence/methods , Nanostructures/chemistry , Nanotechnology/methods , Animals , Nucleic Acids/chemistry , Oligonucleotides/chemistry , Reproducibility of Results
2.
J Am Chem Soc ; 142(28): 12069-12078, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32551615

ABSTRACT

Interactions between biomolecules such as proteins underlie most cellular processes. It is crucial to visualize these molecular-interaction complexes directly within the cell, to show precisely where these interactions occur and thus improve our understanding of cellular regulation. Currently available proximity-sensitive assays for in situ imaging of such interactions produce diffraction-limited signals and therefore preclude information on the nanometer-scale distribution of interaction complexes. By contrast, optical super-resolution imaging provides information about molecular distributions with nanometer resolution, which has greatly advanced our understanding of cell biology. However, current co-localization analysis of super-resolution fluorescence imaging is prone to false positive signals as the detection of protein proximity is directly dependent on the local optical resolution. Here we present proximity-dependent PAINT (PD-PAINT), a method for subdiffraction imaging of protein pairs, in which proximity detection is decoupled from optical resolution. Proximity is detected via the highly distance-dependent interaction of two DNA constructs anchored to the target species. Labeled protein pairs are then imaged with high-contrast and nanoscale resolution using the super-resolution approach of DNA-PAINT. The mechanisms underlying the new technique are analyzed by means of coarse-grained molecular simulations and experimentally demonstrated by imaging DNA-origami tiles and epitopes of cardiac proteins in isolated cardiomyocytes. We show that PD-PAINT can be straightforwardly integrated in a multiplexed super-resolution imaging protocol and benefits from advantages of DNA-based super-resolution localization microscopy, such as high specificity, high resolution, and the ability to image quantitatively.


Subject(s)
Nanotechnology , Optical Imaging , Proteins/analysis , DNA/chemistry , Microscopy, Fluorescence
3.
Methods ; 174: 56-71, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31129290

ABSTRACT

Assessment of the imaging quality in localisation-based super-resolution techniques relies on an accurate characterisation of the imaging setup and analysis procedures. Test samples can provide regular feedback on system performance and facilitate the implementation of new methods. While multiple test samples for regular, 2D imaging are available, they are not common for more specialised imaging modes. Here, we analyse robust test samples for 3D and quantitative super-resolution imaging, which are straightforward to use, are time- and cost-effective and do not require experience beyond basic laboratory and imaging skills. We present two options for assessment of 3D imaging quality, the use of microspheres functionalised for DNA-PAINT and a commercial DNA origami sample. A method to establish and assess a qPAINT workflow for quantitative imaging is demonstrated with a second, commercially available DNA origami sample.


Subject(s)
Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Nanotechnology/methods , Biotinylation , DNA/chemistry , Image Processing, Computer-Assisted , Microspheres , Nucleic Acid Conformation , Oligonucleotides/chemistry , Polystyrenes/chemistry , Streptavidin/chemistry
4.
ACS Nano ; 13(2): 2143-2157, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30715853

ABSTRACT

Nanodomains are intracellular foci which transduce signals between major cellular compartments. One of the most ubiquitous signal transducers, the ryanodine receptor (RyR) calcium channel, is tightly clustered within these nanodomains. Super-resolution microscopy has previously been used to visualize RyR clusters near the cell surface. A majority of nanodomains located deeper within cells have remained unresolved due to limited imaging depths and axial resolution of these modalities. A series of enhancements made to expansion microscopy allowed individual RyRs to be resolved within planar nanodomains at the cell periphery and the curved nanodomains located deeper within the interiors of cardiomyocytes. With a resolution of ∼ 15 nm, we localized both the position of RyRs and their individual phosphorylation for the residue Ser2808. With a three-dimensional imaging protocol, we observed disturbances to the RyR arrays in the nanometer scale which accompanied right-heart failure caused by pulmonary hypertension. The disease coincided with a distinct gradient of RyR hyperphosphorylation from the edge of the nanodomain toward the center, not seen in healthy cells. This spatial profile appeared to contrast distinctly from that sustained by the cells during acute, physiological hyperphosphorylation when they were stimulated with a ß-adrenergic agonist. Simulations of RyR arrays based on the experimentally determined channel positions and phosphorylation signatures showed how the nanoscale dispersal of the RyRs during pathology diminishes its intrinsic likelihood to ignite a calcium signal. It also revealed that the natural topography of RyR phosphorylation could offset potential heterogeneity in nanodomain excitability which may arise from such RyR reorganization.


Subject(s)
Calcium Channels/metabolism , Nanostructures/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Signal Transduction , Adrenergic beta-Agonists/pharmacology , Calcium/metabolism , Humans , Microscopy , Phosphorylation , Signal Transduction/drug effects
5.
Front Physiol ; 9: 1472, 2018.
Article in English | MEDLINE | ID: mdl-30405432

ABSTRACT

Remodelling of the membranes and protein clustering patterns during the pathogenesis of cardiomyopathies has renewed the interest in spatial visualisation of these structures in cardiomyocytes. Coincidental emergence of single molecule (super-resolution) imaging and tomographic electron microscopy tools in the last decade have led to a number of new observations on the structural features of the couplons, the primary sites of excitation-contraction coupling in the heart. In particular, super-resolution and tomographic electron micrographs have revised and refined the classical views of the nanoscale geometries of couplons, t-tubules and the organisation of the principal calcium handling proteins in both healthy and failing hearts. These methods have also allowed the visualisation of some features which were too small to be detected with conventional microscopy tools. With new analytical capabilities such as single-protein mapping, in situ protein quantification, correlative and live cell imaging we are now observing an unprecedented interest in adapting these research tools across the cardiac biophysical research discipline. In this article, we review the depth of the new insights that have been enabled by these tools toward understanding the structure and function of the cardiac couplon. We outline the major challenges that remain in these experiments and emerging avenues of research which will be enabled by these technologies.

6.
Cell Rep ; 22(2): 557-567, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29320748

ABSTRACT

Signaling nanodomains rely on spatial organization of proteins to allow controlled intracellular signaling. Examples include calcium release sites of cardiomyocytes where ryanodine receptors (RyRs) are clustered with their molecular partners. Localization microscopy has been crucial to visualizing these nanodomains but has been limited by brightness of markers, restricting the resolution and quantification of individual proteins clustered within. Harnessing the remarkable localization precision of DNA-PAINT (<10 nm), we visualized punctate labeling within these nanodomains, confirmed as single RyRs. RyR positions within sub-plasmalemmal nanodomains revealed how they are organized randomly into irregular clustering patterns leaving significant gaps occupied by accessory or regulatory proteins. RyR-inhibiting protein junctophilin-2 appeared highly concentrated adjacent to RyR channels. Analyzing these molecular maps showed significant variations in the co-clustering stoichiometry between junctophilin-2 and RyR, even between nearby nanodomains. This constitutes an additional level of complexity in RyR arrangement and regulation of calcium signaling, intrinsically built into the nanodomains.


Subject(s)
Calcium Signaling/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Cluster Analysis , Humans
7.
Opt Express ; 25(10): 11701-11716, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28788730

ABSTRACT

Modern sCMOS cameras are attractive for single molecule localization microscopy (SMLM) due to their high speed but suffer from pixel non-uniformities that can affect localization precision and accuracy. We present a simplified sCMOS non-uniform noise model that incorporates pixel specific read-noise, offset and sensitivity variation. Using this model we develop a new weighted least squared (WLS) fitting method designed to remove the effect of sCMOS pixel non-uniformities. Simulations with the sCMOS noise model, performed to test under which conditions sCMOS specific localization corrections are required, suggested that pixel specific offsets should always be removed. In many applications with thick biological samples photon fluxes are sufficiently high that corrections of read-noise and sensitivity correction may be neglected. When correction is required, e.g. during fast imaging in thin samples, our WLS fit procedure recovered the performance of an equivalent sensor with uniform pixel properties and the fit estimates also attained the Cramer-Rao lower bound. Experiments with sub-resolution beads and a DNA origami test sample confirmed the results of the simulations. The WLS localization procedure is fast to converge, compatible with 2D, 3D and multi-emitter localization and thus provides a computationally efficient sCMOS localization approach compatible with most SMLM modalities.

8.
Eur J Transl Myol ; 25(1): 4747, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-26913143

ABSTRACT

The t-tubular system plays a central role in the synchronisation of calcium signalling and excitation-contraction coupling in most striated muscle cells. Light microscopy has been used for imaging t-tubules for well over 100 years and together with electron microscopy (EM), has revealed the three-dimensional complexities of the t-system topology within cardiomyocytes and skeletal muscle fibres from a range of species. The emerging super-resolution single molecule localisation microscopy (SMLM) techniques are offering a near 10-fold improvement over the resolution of conventional fluorescence light microscopy methods, with the ability to spectrally resolve nanometre scale distributions of multiple molecular targets. In conjunction with the next generation of electron microscopy, SMLM has allowed the visualisation and quantification of intricate t-tubule morphologies within large areas of muscle cells at an unprecedented level of detail. In this paper, we review recent advancements in the t-tubule structural biology with the utility of various microscopy techniques. We outline the technical considerations in adapting SMLM to study t-tubules and its potential to further our understanding of the molecular processes that underlie the sub-micron scale structural alterations observed in a range of muscle pathologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...