Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; : 174438, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960193

ABSTRACT

The methylated form of mercury, MeHg, is a neurotoxin that bioaccumulates and biomagnifies through aquatic food webs, reaching high concentrations in top trophic species. Many seabird species are wide-ranging and feed on forage fish, so they can be used as sentinel species to assess the level of mercury in pelagic or coastal food webs because they integrate the signal from large areas and from lower trophic levels. The Gulf of Maine provides habitat for many seabirds, including endangered roseate terns (Sterna dougalii), common terns (Sterna hirundo), and the southernmost breeding population of black guillemots (Cepphus grylle). Hg levels were assessed in down of newly hatched chicks of three seabird species to determine pre-hatching Hg exposure. Stable isotopes (δ15N, δ13C) in down and chick contour feathers grown after hatching were used as indicators of adult female diet in the period before laying the egg (down) and pre-fledging chick diet (contour feathers). Black guillemot down THg concentrations were 10.07 ±â€¯2.88 µg/g (mean ±â€¯1SD), 5.5× higher than common tern down (1.82 ±â€¯0.436 µg /g), and 7.4× higher than roseate tern down (1.37 ±â€¯0.518 µg/g). Black guillemots also had higher down feather δ15N values (15.1 ±â€¯0.52 ‰) compared to common (13.0 ±â€¯0.72 ‰) or roseate terns (12.8 ±â€¯0.25 ‰), and in black guillemot down feathers, higher Hg concentrations were correlated with δ15N, an indicator of trophic level. Repeated testing of the same tissue types across multiple years is needed to monitor THg exposure for seabirds in the Gulf of Maine; additionally, monitoring species composition and Hg presence in prey species of the black guillemot population would help to determine the source of high THg concentrations in this species.

2.
Mol Ecol ; 33(6): e17282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38299701

ABSTRACT

Many species are shifting their ranges in response to climate-driven environmental changes, particularly in high-latitude regions. However, the patterns of dispersal and colonization during range shifting events are not always clear. Understanding how populations are connected through space and time can reveal how species navigate a changing environment. Here, we present a fine-scale population genomics study of gentoo penguins (Pygoscelis papua), a presumed site-faithful colonial nesting species that has increased in population size and expanded its range south along the Western Antarctic Peninsula. Using whole genome sequencing, we analysed 129 gentoo penguin individuals across 12 colonies located at or near the southern range edge. Through a detailed examination of fine-scale population structure, admixture, and population divergence, we inferred that gentoo penguins historically dispersed rapidly in a stepping-stone pattern from the South Shetland Islands leading to the colonization of Anvers Island, and then the adjacent mainland Western Antarctica Peninsula. Recent southward expansion along the Western Antarctic Peninsula also followed a stepping-stone dispersal pattern coupled with limited post-divergence gene flow from colonies on Anvers Island. Genetic diversity appeared to be maintained across colonies during the historical dispersal process, and range-edge populations are still growing. This suggests large numbers of migrants may provide a buffer against founder effects at the beginning of colonization events to maintain genetic diversity similar to that of the source populations before migration ceases post-divergence. These results coupled with a continued increase in effective population size since approximately 500-800 years ago distinguish gentoo penguins as a robust species that is highly adaptable and resilient to changing climate.


Subject(s)
Founder Effect , Spheniscidae , Humans , Animals , Population Density , Spheniscidae/genetics , Antarctic Regions , Whole Genome Sequencing
3.
Oecologia ; 203(1-2): 167-179, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37815598

ABSTRACT

Ecological theory predicts that closely-related species must occupy different niches to coexist. How marine top predators achieve this during breeding, when they often gather in large multi-species colonies and are constrained to central-place foraging, has been mostly studied in productive temperate and polar oceans with abundant resources, but less so in poorer, tropical waters. Here, we track the foraging movements of two closely-related sympatric seabirds-the white-tailed and red-tailed tropicbirds Phaethon lepturus and P. rubricauda-breeding on Aldabra Atoll, Seychelles, to investigate potential mechanisms of niche segregation and shed light on their contrasting population trends. Combining data from GPS, immersion, depth and accelerometry loggers, we show that the two species have similar behaviour at sea, but are completely segregated spatially, with red-tailed tropicbirds flying further to feed and using different feeding areas than white-tailed tropicbirds. Using nest-based camera traps, we show that low breeding success of both species-which likely drives observed population declines-is caused by high nest predation. However, the two species are targeted by different predators, with native avian predators mainly targeting red-tailed tropicbird nests, and invasive rats raiding white-tailed tropicbird nests when they leave their eggs unattended. Our findings provide new insight into the foraging ecology of tropicbirds and have important conservation implications. The extensive range and spatial segregation highlight the importance of considering large-scale protection of waters around tropical seabird colonies, while the high level of nest predation provides evidence in support of rat eradication and investigating potential nest protection from native avian predators.


Subject(s)
Birds , Predatory Behavior , Animals , Rats
4.
Mar Pollut Bull ; 177: 113560, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35314396

ABSTRACT

Ingestion of microplastics has been documented across marine species, but exposure remains sparsely described in many seabird species. We assess microplastic (between 0.2 and 5.0 mm) ingestion in two Northwestern Atantic - breeding species for which exposure to microplastics is entirely or largely undescribed: Common Terns (Sterna hirundo) and Roseate Terns (S. dougallii). Common Tern microplastic load did not vary between life stages (p = 0.590); microplastic load did differ in Common Tern adults breeding at two of three colonies explored (p = 0.002), with no other regional differences observed. Roseate Terns ingested significantly more microplastics than Common Terns (p = 0.007). Our results show that microplastic ingestion by terns varies regionally and interspecifically, but not by life stage, trends potentially explained by dietary differences. We provide the first quantification of microplastic fiber ingestion by terns in the Northwestern Atlantic and identify trophic dynamics related to microplastic ingestion, representing an important step toward understanding the risk of the pollutant to terns across regions, as well as toward the use of terns as potential bioindicators of microplastics.


Subject(s)
Charadriiformes , Animals , Breeding , Eating , Incidence , Microplastics , Plastics
5.
J Anim Ecol ; 90(5): 1152-1164, 2021 05.
Article in English | MEDLINE | ID: mdl-33748966

ABSTRACT

As more and more species face anthropogenic threats, understanding the causes of population declines in vulnerable taxa is essential. However, long-term datasets, ideal to identify lasting or indirect effects on fitness measures such as those caused by environmental factors, are not always available. Here we use a single year but multi-population approach on populations with contrasting demographic trends to identify possible drivers and mechanisms of seabird population changes in the north-east Atlantic, using the Atlantic puffin, a declining species, as a model system. We combine miniature GPS trackers with camera traps and DNA metabarcoding techniques on four populations across the puffins' main breeding range to provide the most comprehensive study of the species' foraging ecology to date. We find that puffins use a dual foraging tactic combining short and long foraging trips in all four populations, but declining populations in southern Iceland and north-west Norway have much greater foraging ranges, which require more (costly) flight, as well as lower chick-provisioning frequencies, and a more diverse but likely less energy-dense diet, than stable populations in northern Iceland and Wales. Together, our findings suggest that the poor productivity of declining puffin populations in the north-east Atlantic is driven by breeding adults being forced to forage far from the colony, presumably because of low prey availability near colonies, possibly amplified by intraspecific competition. Our results provide valuable information for the conservation of this and other important North-Atlantic species and highlight the potential of multi-population approaches to answer important questions about the ecological drivers of population trends.


Subject(s)
Charadriiformes , Animals , Iceland , Norway , Population Dynamics , Wales
6.
Mol Biol Evol ; 37(6): 1708-1726, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32096861

ABSTRACT

Over evolutionary time, pathogen challenge shapes the immune phenotype of the host to better respond to an incipient threat. The extent and direction of this selection pressure depend on the local pathogen composition, which is in turn determined by biotic and abiotic features of the environment. However, little is known about adaptation to local pathogen threats in wild animals. The Gentoo penguin (Pygoscelis papua) is a species complex that lends itself to the study of immune adaptation because of its circumpolar distribution over a large latitudinal range, with little or no admixture between different clades. In this study, we examine the diversity in a key family of innate immune genes-the Toll-like receptors (TLRs)-across the range of the Gentoo penguin. The three TLRs that we investigated present varying levels of diversity, with TLR4 and TLR5 greatly exceeding the diversity of TLR7. We present evidence of positive selection in TLR4 and TLR5, which points to pathogen-driven adaptation to the local pathogen milieu. Finally, we demonstrate that two positively selected cosegregating sites in TLR5 are sufficient to alter the responsiveness of the receptor to its bacterial ligand, flagellin. Taken together, these results suggest that Gentoo penguins have experienced distinct pathogen-driven selection pressures in different environments, which may be important given the role of the Gentoo penguin as a sentinel species in some of the world's most rapidly changing environments.


Subject(s)
Selection, Genetic , Spheniscidae/genetics , Toll-Like Receptors/genetics , Animals , Flagellin/immunology , Genetic Variation , Phylogeography , Spheniscidae/immunology
7.
Ecol Evol ; 10(24): 13836-13846, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33391684

ABSTRACT

Gentoo penguins (Pygoscelis papua) are found across the Southern Ocean with a circumpolar distribution and notable genetic and morphological variation across their geographic range. Whether this geographic variation represents species-level diversity has yet to be investigated in an integrative taxonomic framework. Here, we show that four distinct populations of gentoo penguins (Iles Kerguelen, Falkland Islands, South Georgia, and South Shetlands/Western Antarctic Peninsula) are genetically and morphologically distinct from one another. We present here a revised taxonomic treatment including formal nomenclatural changes. We suggest the designation of four species of gentoo penguin: P. papua in the Falkland Islands, P. ellsworthi in the South Shetland Islands/Western Antarctic Peninsula, P. taeniata in Iles Kerguelen, and a new gentoo species P. poncetii, described herein, in South Georgia. These findings of cryptic diversity add to many other such findings across the avian tree of life in recent years. Our results further highlight the importance of reassessing species boundaries as methodological advances are made, particularly for taxa of conservation concern. We recommend reassessment by the IUCN of each species, particularly P. taeniata and P. poncetii, which both show evidence of decline.

8.
Ecol Evol ; 9(23): 13477-13494, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31871659

ABSTRACT

The role of species divergence due to ecologically based divergent selection-or ecological speciation-in generating and maintaining biodiversity is a central question in evolutionary biology. Comparison of the genomes of phylogenetically related taxa spanning a selective habitat gradient enables discovery of divergent signatures of selection and thereby provides valuable insight into the role of divergent ecological selection in speciation. Tidal marsh ecosystems provide tractable opportunities for studying organisms' adaptations to selective pressures that underlie ecological divergence. Sharp environmental gradients across the saline-freshwater ecotone within tidal marshes present extreme adaptive challenges to terrestrial vertebrates. Here, we sequence 20 whole genomes of two avian sister species endemic to tidal marshes-the saltmarsh sparrow (Ammospiza caudacutus) and Nelson's sparrow (A. nelsoni)-to evaluate the influence of selective and demographic processes in shaping genome-wide patterns of divergence. Genome-wide divergence between these two recently diverged sister species was notably high (genome-wide F ST = 0.32). Against a background of high genome-wide divergence, regions of elevated divergence were widespread throughout the genome, as opposed to focused within islands of differentiation. These patterns may be the result of genetic drift resulting from past tidal march colonization events in conjunction with divergent selection to different environments. We identified several candidate genes that exhibited elevated divergence between saltmarsh and Nelson's sparrows, including genes linked to osmotic regulation, circadian rhythm, and plumage melanism-all putative candidates linked to adaptation to tidal marsh environments. These findings provide new insights into the roles of divergent selection and genetic drift in generating and maintaining biodiversity.

9.
Proc Natl Acad Sci U S A ; 116(52): 26690-26696, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843914

ABSTRACT

Climate shifts are key drivers of ecosystem change. Despite the critical importance of Antarctica and the Southern Ocean for global climate, the extent of climate-driven ecological change in this region remains controversial. In particular, the biological effects of changing sea ice conditions are poorly understood. We hypothesize that rapid postglacial reductions in sea ice drove biological shifts across multiple widespread Southern Ocean species. We test for demographic shifts driven by climate events over recent millennia by analyzing population genomic datasets spanning 3 penguin genera (Eudyptes, Pygoscelis, and Aptenodytes). Demographic analyses for multiple species (macaroni/royal, eastern rockhopper, Adélie, gentoo, king, and emperor) currently inhabiting southern coastlines affected by heavy sea ice conditions during the Last Glacial Maximum (LGM) yielded genetic signatures of near-simultaneous population expansions associated with postglacial warming. Populations of the ice-adapted emperor penguin are inferred to have expanded slightly earlier than those of species requiring ice-free terrain. These concerted high-latitude expansion events contrast with relatively stable or declining demographic histories inferred for 4 penguin species (northern rockhopper, western rockhopper, Fiordland crested, and Snares crested) that apparently persisted throughout the LGM in ice-free habitats. Limited genetic structure detected in all ice-affected species across the vast Southern Ocean may reflect both rapid postglacial colonization of subantarctic and Antarctic shores, in addition to recent genetic exchange among populations. Together, these analyses highlight dramatic, ecosystem-wide responses to past Southern Ocean climate change and suggest potential for further shifts as warming continues.

10.
Evol Appl ; 12(10): 1971-1987, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31700539

ABSTRACT

Selection can create complex patterns of adaptive differentiation among populations in the wild that may be relevant to management. Atlantic cod in the Northwest Atlantic are at a fraction of their historical abundance and a lack of recovery within the Gulf of Maine has created concern regarding the misalignment of fisheries management structures with biological population structure. To address this and investigate genome-wide patterns of variation, we used low-coverage sequencing to perform a region-wide, whole-genome analysis of fine-scale population structure. We sequenced 306 individuals from 20 sampling locations in U.S. and Canadian waters, including the major spawning aggregations in the Gulf of Maine in addition to spawning aggregations from Georges Bank, southern New England, the eastern Scotian Shelf, and St. Pierre Bank. With genotype likelihoods estimated at almost 11 million loci, we found large differences in haplotype frequencies of previously described chromosomal inversions between Canadian and U.S. sampling locations and also among U.S. sampling locations. Our whole-genome resolution also revealed novel outlier peaks, some of which showed significant genetic differentiation among sampling locations. Comparisons between allochronic winter- and spring-spawning populations revealed highly elevated relative (FST ) and absolute (dxy ) genetic differentiation near genes involved in reproduction, particularly genes associated with the brain-pituitary-gonadal axis, which likely control timing of spawning, contributing to prezygotic isolation. We also found genetic differentiation associated with heat shock proteins and other genes of functional relevance, with complex patterns that may point to multifaceted selection pressures and local adaptation among spawning populations. We provide a high-resolution picture of U.S. Atlantic cod population structure, revealing greater complexity than is currently recognized in management. Our genome-scan approach likely underestimates the full suite of adaptive differentiation among sampling locations. Nevertheless, it should inform the revision of stock boundaries to preserve adaptive genetic diversity and evolutionary potential of cod populations.

11.
Mol Ecol ; 27(23): 4680-4697, 2018 12.
Article in English | MEDLINE | ID: mdl-30308702

ABSTRACT

The mechanisms that determine patterns of species dispersal are important factors in the production and maintenance of biodiversity. Understanding these mechanisms helps to forecast the responses of species to environmental change. Here, we used a comparative framework and genomewide data obtained through RAD-Seq to compare the patterns of connectivity among breeding colonies for five penguin species with shared ancestry, overlapping distributions and differing ecological niches, allowing an examination of the intrinsic and extrinsic barriers governing dispersal patterns. Our findings show that at-sea range and oceanography underlie patterns of dispersal in these penguins. The pelagic niche of emperor (Aptenodytes forsteri), king (A. patagonicus), Adélie (Pygoscelis adeliae) and chinstrap (P. antarctica) penguins facilitates gene flow over thousands of kilometres. In contrast, the coastal niche of gentoo penguins (P. papua) limits dispersal, resulting in population divergences. Oceanographic fronts also act as dispersal barriers to some extent. We recommend that forecasts of extinction risk incorporate dispersal and that management units are defined by at-sea range and oceanography in species lacking genetic data.


Subject(s)
Animal Distribution , Genetics, Population , Genomics , Spheniscidae/genetics , Animals , Antarctic Regions , Ecosystem , Gene Flow , Genetic Variation , Genotyping Techniques , Phylogeny , Polymorphism, Single Nucleotide , Spheniscidae/classification
12.
Sci Rep ; 8(1): 3926, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500389

ABSTRACT

Despite concerted international effort to track and interpret shifts in the abundance and distribution of Adélie penguins, large populations continue to be identified. Here we report on a major hotspot of Adélie penguin abundance identified in the Danger Islands off the northern tip of the Antarctic Peninsula (AP). We present the first complete census of Pygoscelis spp. penguins in the Danger Islands, estimated from a multi-modal survey consisting of direct ground counts and computer-automated counts of unmanned aerial vehicle (UAV) imagery. Our survey reveals that the Danger Islands host 751,527 pairs of Adélie penguins, more than the rest of AP region combined, and include the third and fourth largest Adélie penguin colonies in the world. Our results validate the use of Landsat medium-resolution satellite imagery for the detection of new or unknown penguin colonies and highlight the utility of combining satellite imagery with ground and UAV surveys. The Danger Islands appear to have avoided recent declines documented on the Western AP and, because they are large and likely to remain an important hotspot for avian abundance under projected climate change, deserve special consideration in the negotiation and design of Marine Protected Areas in the region.


Subject(s)
Animal Distribution , Geographic Mapping , Satellite Imagery/methods , Spheniscidae/growth & development , Animals , Climate Change , Islands , Population Dynamics , Spheniscidae/physiology
13.
Mol Ecol ; 26(15): 3883-3897, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28488293

ABSTRACT

Understanding the boundaries of breeding populations is of great importance for conservation efforts and estimates of extinction risk for threatened species. However, determining these boundaries can be difficult when population structure is subtle. Emperor penguins are highly reliant on sea ice, and some populations may be in jeopardy as climate change alters sea-ice extent and quality. An understanding of emperor penguin population structure is therefore urgently needed. Two previous studies have differed in their conclusions, particularly whether the Ross Sea, a major stronghold for the species, is isolated or not. We assessed emperor penguin population structure using 4,596 genome-wide single nucleotide polymorphisms (SNPs), characterized in 110 individuals (10-16 per colony) from eight colonies around Antarctica. In contrast to a previous conclusion that emperor penguins are panmictic around the entire continent, we find that emperor penguins comprise at least four metapopulations, and that the Ross Sea is clearly a distinct metapopulation. Using larger sample sizes and a thorough assessment of the limitations of different analytical methods, we have shown that population structure within emperor penguins does exist and argue that its recognition is vital for the effective conservation of the species. We discuss the many difficulties that molecular ecologists and managers face in the detection and interpretation of subtle population structure using large SNP data sets, and argue that subtle structure should be taken into account when determining management strategies for threatened species, until accurate estimates of demographic connectivity among populations can be made.


Subject(s)
Conservation of Natural Resources , Genetics, Population , Spheniscidae/genetics , Animals , Antarctic Regions , Climate Change , Ice Cover , Polymorphism, Single Nucleotide , Population Density
14.
BMC Evol Biol ; 16(1): 211, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27733109

ABSTRACT

BACKGROUND: Seabirds are important components of marine ecosystems, both as predators and as indicators of ecological change, being conspicuous and sensitive to changes in prey abundance. To determine whether fluctuations in population sizes are localised or indicative of large-scale ecosystem change, we must first understand population structure and dispersal. King penguins are long-lived seabirds that occupy a niche across the sub-Antarctic zone close to the Polar Front. Colonies have very different histories of exploitation, population recovery, and expansion. RESULTS: We investigated the genetic population structure and patterns of colonisation of king penguins across their current range using a dataset of 5154 unlinked, high-coverage single nucleotide polymorphisms generated via restriction site associated DNA sequencing (RADSeq). Despite breeding at a small number of discrete, geographically separate sites, we find only very slight genetic differentiation among colonies separated by thousands of kilometers of open-ocean, suggesting migration among islands and archipelagos may be common. Our results show that the South Georgia population is slightly differentiated from all other colonies and suggest that the recently founded Falkland Island colony is likely to have been established by migrants from the distant Crozet Islands rather than nearby colonies on South Georgia, possibly as a result of density-dependent processes. CONCLUSIONS: The observed subtle differentiation among king penguin colonies must be considered in future conservation planning and monitoring of the species, and demographic models that attempt to forecast extinction risk in response to large-scale climate change must take into account migration. It is possible that migration could buffer king penguins against some of the impacts of climate change where colonies appear panmictic, although it is unlikely to protect them completely given the widespread physical changes projected for their Southern Ocean foraging grounds. Overall, large-scale population genetic studies of marine predators across the Southern Ocean are revealing more interconnection and migration than previously supposed.


Subject(s)
Animal Migration/physiology , Ecosystem , Genetics, Population , Spheniscidae/genetics , Animals , Antarctic Regions , Bayes Theorem , Cluster Analysis , Discriminant Analysis , Genetic Variation , Genotyping Techniques , Geography , Phylogeography , Population Density , Principal Component Analysis
15.
Ecol Evol ; 6(6): 1834-53, 2016 03.
Article in English | MEDLINE | ID: mdl-26933489

ABSTRACT

Climate change, fisheries' pressure on penguin prey, and direct human disturbance of wildlife have all been implicated in causing large shifts in the abundance and distribution of penguins in the Southern Ocean. Without mark-recapture studies, understanding how colonies form and, by extension, how ranges shift is challenging. Genetic studies, particularly focused on newly established colonies, provide a snapshot of colonization and can reveal the extent to which shifts in abundance and occupancy result from changes in demographic rates (e.g., reproduction and survival) or migration among suitable patches of habitat. Here, we describe the population structure of a colonial seabird breeding across a large latitudinal range in the Southern Ocean. Using multilocus microsatellite genotype data from 510 Gentoo penguin (Pygoscelis papua) individuals from 14 colonies along the Scotia Arc and Antarctic Peninsula, together with mitochondrial DNA data, we find strong genetic differentiation between colonies north and south of the Polar Front, that coincides geographically with the taxonomic boundary separating the subspecies P. p. papua and P. p. ellsworthii. Using a discrete Bayesian phylogeographic approach, we show that southern Gentoos expanded from a possible glacial refuge in the center of their current range, colonizing regions to the north and south through rare, long-distance dispersal. Our findings show that this dispersal is important for new colony foundation and range expansion in a seabird species that ordinarily exhibits high levels of natal philopatry, though persistent oceanographic features serve as barriers to movement.

16.
Evol Appl ; 8(8): 796-806, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26366197

ABSTRACT

Floating males are usually thought of as nonbreeders. However, some floating individuals are able to reproduce through extra-pair copulations. Floater reproductive success can impact breeders' sex ratio, reproductive variance, multiple paternity and inbreeding, particularly in small populations. Changes in reproductive variance alter the rate of genetic drift and loss of genetic diversity. Therefore, genetic management of threatened species requires an understanding of floater reproduction and determinants of floating behaviour to effectively conserve species. Here, we used a pedigreed, free-living population of the endangered New Zealand hihi (Notiomystis cincta) to assess variance in male reproductive success and test the genetic (inbreeding and heritability) and conditional (age and size) factors that influence floater behaviour and reproduction. Floater reproduction is common in this species. However, floater individuals have lower reproductive success and variance in reproductive success than territorial males (total and extra-pair fledglings), so their relative impact on the population's reproductive performance is low. Whether an individual becomes a floater, and if so then how successful they are, is determined mainly by individual age (young and old) and to lesser extents male size (small) and inbreeding level (inbred). Floating males have a small, but important role in population reproduction and persistence of threatened populations.

17.
Glob Chang Biol ; 21(6): 2215-26, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25728986

ABSTRACT

The relationship between population structure and demographic history is critical to understanding microevolution and for predicting the resilience of species to environmental change. Using mitochondrial DNA from extant colonies and radiocarbon-dated subfossils, we present the first microevolutionary analysis of emperor penguins (Aptenodytes forsteri) and show their population trends throughout the last glacial maximum (LGM, 19.5-16 kya) and during the subsequent period of warming and sea ice retreat. We found evidence for three mitochondrial clades within emperor penguins, suggesting that they were isolated within three glacial refugia during the LGM. One of these clades has remained largely isolated within the Ross Sea, while the two other clades have intermixed around the coast of Antarctica from Adélie Land to the Weddell Sea. The differentiation of the Ross Sea population has been preserved despite rapid population growth and opportunities for migration. Low effective population sizes during the LGM, followed by a rapid expansion around the beginning of the Holocene, suggest that an optimum set of sea ice conditions exist for emperor penguins, corresponding to available foraging area.


Subject(s)
Ice Cover , Refugium , Spheniscidae/genetics , Animals , Antarctic Regions , Biological Evolution , Climate Change , DNA, Mitochondrial , Fossils , Phylogeography , Population Density , Spheniscidae/physiology
18.
Sci Rep ; 4: 5024, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24865774

ABSTRACT

Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces 'winners', species that benefit from these events and 'losers', species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a 'reversal of fortunes' as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change 'winners', while Adélie and chinstrap penguins have become climate change 'losers'.


Subject(s)
Acclimatization/genetics , Biological Evolution , Climate Change , Spheniscidae/physiology , Animals , Antarctic Regions , Genetic Fitness , Spheniscidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...