Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 81(2): 02A905, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20192403

ABSTRACT

A numerical toolset to help in understanding physical processes in the electron cyclotron resonance charge breeder (ECRCB) and further to help optimization and design of current and future machines is presented. The toolset consists of three modules (Monte Carlo charge breeding code, generalized electron cyclotron resonance ion source modeling, and ion extraction), each modeling different processes occurring in the ECRCB from beam injection to extraction. The toolset provides qualitative study, such as parameter studies, and scaling of the operation, and physical understanding in the ECRCB. The methodology and a sample integrated modeling are presented.

2.
Rev Sci Instrum ; 81(2): 02B705, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20192445

ABSTRACT

Ion Extraction (IONEX) is an ion extraction modeling code, developed at FAR-TECH, Inc., based on the meshless particle-in-cloud-of-points concept. IONEX self-consistently solves motion equations for ions and Poisson's equation for the electrostatic field, assuming a Boltzmann distribution for the electrons. IONEX is capable of handling multiple species and is graphical user interface-driven. The two-dimensional version is benchmarked with IGUN. The basic algorithm and sample runs are presented.

3.
Rev Sci Instrum ; 79(2 Pt 2): 02B906, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315221

ABSTRACT

Numerical simulation results by the GEM and MCBC codes are presented, along with a comparison with experiments for beam capture dynamics and parameter studies of charge state distribution (CSD) of electron cyclotron resonance charge breeder ion sources. First, steady state plasma profiles are presented by GEM with respect to key experimental parameters such as rf power and gas pressure. As rf power increases, electron density increases by a small amount and electron energy by a large amount. The central electrostatic potential dip also increased. Next, MCBC is used to trace injected beam ions to obtain beam capture profiles. Using the captured ion profiles, GEM obtains a CSD of beam ions. As backscattering can be significant, capturing the ions near the center of the device enhances the CSD. The effect of rf power on the beam CSD is mainly due to different steady states plasmas. Example cases are presented assuming that the beam ions are small enough not to affect the plasma.

4.
Rev Sci Instrum ; 78(10): 103503, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17979415

ABSTRACT

Beam capture of injected ions and charge breeding in electron cyclotron resonance (ECR) charge breeder ion source plasmas has been investigated utilizing an ECR plasma modeling code, the generalized ECR ion source model, and a Monte Carlo beam capture code. Beam capturing dynamics, charge breeding in the plasma, and the extracted charged ion states are described. Optimization of ion beam energy is performed for (1) high beam capture efficiency and (2) high charge state ion beam extractions. A sample case study for ANL-ECR has been performed. Ions entering ECR ion source plasma are slowed down mostly by the background ions. Assuming Maxwellian plasma ions, maximum beam energy loss occurs when the beam velocity is around the background thermal velocity in magnitude. It is also found that beam capture location affects charge state distribution. For instance, with a majority of beam ions captured near the middle of the device higher currents for higher charge states are obtained. The beam ions captured near the entry have a higher probability of backstreaming after they are captured. For this reason, the optimum beam energy of the injected Ar(+) beam ions for charge breeding is generally higher than the optimum input beam energy for maximum beam energy loss.


Subject(s)
Computer-Aided Design , Cyclotrons/instrumentation , Gases/chemistry , Models, Theoretical , Radiometry/methods , Computer Simulation , Electrons , Equipment Design , Equipment Failure Analysis , Hot Temperature , Ions , Monte Carlo Method , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...