Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
3.
Front Mol Biosci ; 3: 10, 2016.
Article in English | MEDLINE | ID: mdl-27066490

ABSTRACT

During their passage through the circulation, red blood cells (RBCs) encounter severe physiological conditions consisting of mechanical stress, oxidative damage and fast changes in ionic and osmotic conditions. In order to survive for 120 days, RBCs adapt to their surroundings by subtle regulation of membrane organization and metabolism. RBC homeostasis depends on interactions between the integral membrane protein band 3 with other membrane and cytoskeletal proteins, and with key enzymes of various metabolic pathways. These interactions are regulated by the binding of deoxyhemoglobin to band 3, and by a signaling network revolving around Lyn kinase and Src family kinase-mediated phosphorylation of band 3. Here we show that manipulation of the interaction between the lipid bilayer and the cytoskeleton, using various pharmacological agents that interfere with protein-protein interactions and membrane lipid organization, has various effects on: (1) morphology, as shown by high resolution microscopy and quantitative image analysis; (2) organization of membrane proteins, as indicated by immunofluorescence confocal microscopy and quantitative as well as qualitative analysis of vesicle generation; (3) membrane lipid organization, as indicated by flow cytometric analysis of phosphatidylserine exposure; (4) deformability, as assessed in capillary-mimicking circumstances using a microfluidics system; (5) deformability as determined using a spleen-mimicking device; (6) metabolic activity as indicated by metabolomics. Our data show that there is a complex relationship between red cell morphology, membrane organization and deformability. Also, our data show that red blood cells have a relatively high resistance to disturbance of membrane organization in vitro, which may reflect their capacity to withstand mechanical, oxidative and osmotic stress in vivo.

4.
Article in English | MEDLINE | ID: mdl-26317043

ABSTRACT

The presence of acanthocytes in the blood is characteristic of patients suffering from neuroacanthocytosis (NA). Recent studies have described abnormal phosphorylation of the proteins involved in connecting the membrane and cytoskeleton in patient-derived erythrocytes. The involvement of lipids in the underlying signaling pathways and recent reports on in vitro disease-associated lipid alterations support renewed research into lipid composition, signal transduction, and metabolism in patient erythrocytes. In addition to morphology, changes in membrane organization affect erythrocyte function and survival. Patient erythrocytes may have a decreased ability to deform, and this may contribute to accelerated erythrocyte removal and a decreased oxygen supply, especially in vulnerable brain regions. The presently available data indicate that acanthocytes are likely to originate in the bone marrow, making erythropoiesis an obvious new focus in NA research. Moreover, new, detailed morphological observations indicate that acanthocytes may be the tip of the iceberg with regard to misshapen erythrocytes in the circulation of patients with NA. A systematic assessment of patient erythrocyte morphology, deformability, oxygen delivery, and metabolism will be instrumental in determining the putative contribution of erythrocyte function to NA clinical symptoms.

5.
PLoS One ; 10(5): e0125580, 2015.
Article in English | MEDLINE | ID: mdl-25933379

ABSTRACT

BACKGROUND: Panthothenate kinase-associated neurodegeneration (PKAN) belongs to a group of hereditary neurodegenerative disorders known as neuroacanthocytosis (NA). This genetically heterogeneous group of diseases is characterized by degeneration of neurons in the basal ganglia and by the presence of deformed red blood cells with thorny protrusions, acanthocytes, in the circulation. OBJECTIVE: The goal of our study is to elucidate the molecular mechanisms underlying this aberrant red cell morphology and the corresponding functional consequences. This could shed light on the etiology of the neurodegeneration. METHODS: We performed a qualitative and semi-quantitative morphological, immunofluorescent, biochemical and functional analysis of the red cells of several patients with PKAN and, for the first time, of the red cells of their family members. RESULTS: We show that the blood of patients with PKAN contains not only variable numbers of acanthocytes, but also a wide range of other misshapen red cells. Immunofluorescent and immunoblot analyses suggest an altered membrane organization, rather than quantitative changes in protein expression. Strikingly, these changes are not limited to the red blood cells of PKAN patients, but are also present in the red cells of heterozygous carriers without neurological problems. Furthermore, changes are not only present in acanthocytes, but also in other red cells, including discocytes. The patients' cells, however, are more fragile, as observed in a spleen-mimicking device. CONCLUSION: These morphological, molecular and functional characteristics of red cells in patients with PKAN and their family members offer new tools for diagnosis and present a window into the pathophysiology of neuroacanthocytosis.


Subject(s)
Acanthocytes/pathology , Erythrocyte Membrane/pathology , Neuroacanthocytosis/pathology , Pantothenate Kinase-Associated Neurodegeneration/pathology , Acanthocytes/metabolism , Acanthocytes/ultrastructure , Adult , Aged , Anion Exchange Protein 1, Erythrocyte/genetics , Anion Exchange Protein 1, Erythrocyte/metabolism , Case-Control Studies , Cell Shape , Child , Erythrocyte Count , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/ultrastructure , Female , Gene Expression , Heterozygote , Homozygote , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Neuroacanthocytosis/genetics , Neuroacanthocytosis/metabolism , Neuroacanthocytosis/physiopathology , Osmotic Fragility , Pantothenate Kinase-Associated Neurodegeneration/genetics , Pantothenate Kinase-Associated Neurodegeneration/metabolism , Pantothenate Kinase-Associated Neurodegeneration/physiopathology , Pedigree , Spectrin/genetics , Spectrin/metabolism
6.
Biomed Res Int ; 2014: 764268, 2014.
Article in English | MEDLINE | ID: mdl-25295273

ABSTRACT

Red blood cells (RBCs) undergo extensive deformation when travelling through the microcapillaries. Deformability, the combined result of properties of the membrane-cytoskeleton complex, the surface area-to-volume ratio, and the hemoglobin content, is a critical determinant of capillary blood flow. During blood bank storage and in many pathophysiological conditions, RBC morphology changes, which has been suggested to be associated with decreased deformability and removal of RBC. While various techniques provide information on the rheological properties of stored RBCs, their clinical significance is controversial. We developed a microfluidic approach for evaluating RBC deformability in a physiologically meaningful and clinically significant manner. Unlike other techniques, our method enables a high-throughput determination of changes in deformation capacity to provide statistically significant data, while providing morphological information at the single-cell level. Our data show that, under conditions that closely mimic capillary dimensions and flow, the capacity to deform and the capacity to relax are not affected during storage in the blood bank. Our data also show that altered cell morphology by itself does not necessarily affect deformability.


Subject(s)
Erythrocyte Deformability , Erythrocytes/pathology , Hemodynamics , Microfluidics/methods , Blood Banks , Erythrocytes/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Humans , Rheology
7.
Biochim Biophys Acta ; 1838(12): 3097-106, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25109936

ABSTRACT

Arginine-rich cell-penetrating peptides (CPP) are widely employed as delivery vehicles for a large variety of macromolecular cargos. As a mechanism-of-action for induction of uptake cross-linking of heparan sulfates and interaction with lipid head groups have been proposed. Here, we employed a multivalent display of the CPP nona-arginine (R9) on a linear dextran scaffold to assess the impact of heparan sulfate and lipid interactions on uptake and membrane perturbation. Increased avidity through multivalency should potentiate molecular phenomena that may only play a minor role if only individual peptides are used. To this point, the impact of multivalency has only been explored for dendrimers, CPP-decorated proteins and nanoparticles. We reasoned that multivalency on a linear scaffold would more faithfully mimic the arrangement of peptides at the membrane at high local peptide concentrations. On average, five R9 were coupled to a linear dextran backbone. The conjugate displayed a direct cytoplasmic uptake similar to free R9 at concentrations higher than 10µM. However, this uptake was accompanied by an increased membrane disturbance and cellular toxicity that was independent of the presence of heparan sulfates. In contrast, for erythrocytes, the multivalent conjugate induced aggregation, however, showed only limited membrane perturbation. Overall, the results demonstrate that multivalency of R9 on a linear scaffold strongly increases the capacity to interact with the plasma membrane. However, the induction of membrane perturbation is a function of the cellular response to peptide binding.

8.
Cell Physiol Biochem ; 32(4): 801-13, 2013.
Article in English | MEDLINE | ID: mdl-24080940

ABSTRACT

BACKGROUND/AIMS: Erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte outer membrane. Susceptibility to eryptosis is enhanced in aged erythrocytes and stimulated by NFκB-inhibitors Bay 11-7082 and parthenolide. Here we explored whether expression of NFκB and susceptibility to inhibitor-induced eryptosis is sensitive to erythrocyte age. METHODS: Human erythrocytes were separated into five fractions, based on age-associated characteristics cell density and volume. NFκB compared to ß-actin protein abundance was estimated by Western blotting and cell volume from forward scatter. Phosphatidylserine exposure was identified using annexin-V binding. RESULTS: NFκB was most abundant in young erythrocytes but virtually absent in aged erythrocytes. A 24h or 48h exposure to Ringer resulted in spontaneous decrease of forward scatter and increase of annexin V binding, effects more pronounced in aged than in young erythrocytes. Both, Bay 11-7082 (20 µM) and parthenolide (100 µM) triggered eryptosis, effects again most pronounced in aged erythrocytes. CONCLUSION: NFκB protein abundance is lowest and spontaneous eryptosis as well as susceptibility to Bay 11-7082 and parthenolide highest in aged erythrocytes. Thus, inhibition of NFκB signalling alone is not responsible for the stimulation of eryptosis by parthenolide or Bay 11-7082.


Subject(s)
Erythrocytes/drug effects , Erythrocytes/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Nitriles/pharmacology , Sesquiterpenes/pharmacology , Sulfones/pharmacology , Aging/physiology , Apoptosis/drug effects , Cells, Cultured , Humans , Time Factors
10.
Br J Haematol ; 157(5): 606-14, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22429222

ABSTRACT

Mature, circulating erythrocytes undergo senescence, which limits their life span to approximately 120 d. Upon injury, erythrocytes may undergo suicidal erythrocyte death or eryptosis, which may accelerate senescence and shorten their survival. Eryptosis is defined as cell shrinkage and exposure of phosphatidylserine at the cell surface. Triggers of eryptosis include oxidative stress. The present study addresses the impact of erythrocyte age on the relative susceptibility to eryptosis. Erythrocytes were separated into five fractions, based on age-associated differences in density and volume. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, the cell volume from forward scatter, and the Ca(2+) level from Fluo-3-dependent fluorescence. In addition, glutathione (GSH) concentrations were measured by an enzymatic/colourimetric method. After 48 h incubation in Ringer solution, Annexin V binding increased significantly with erythrocyte age. The differences were not accompanied by altered GSH concentrations, but were reversed by addition of the antioxidant N-acetyl-L-cysteine in vitro. Also, N-acetyl-L-cysteine significantly prolonged the half-life of circulating mouse erythrocytes in vivo. Thus, the susceptibility to eryptosis increases with the age of the erythrocytes, and this effect is at least partially due to enhanced sensitivity to oxidative stress.


Subject(s)
Cell Death/physiology , Cellular Senescence/physiology , Erythrocytes/metabolism , Acetylcysteine/metabolism , Calcium/metabolism , Erythrocytes/pathology , Glutathione/metabolism , Humans , Phosphatidylserines/metabolism
11.
Transfusion ; 51(5): 1072-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21077907

ABSTRACT

BACKGROUND: During storage of red blood cell (RBCs) before transfusion, RBCs undergo a series of structural and functional changes that include the exposure of phosphatidylserine (PS), a potent removal signal. It was postulated that, during blood bank storage, the susceptibility to stress-induced PS exposure increases, thereby rendering a considerable fraction of the RBCs susceptible to rapid removal after transfusion. STUDY DESIGN AND METHODS: RBCs were processed and stored following standard Dutch blood bank procedures. Samples were taken every week for up to 6 weeks and exposed to various stress conditions, such as hyperosmotic shock and energy depletion. The effect of these treatments on PS exposure was measured by flow cytometric analysis of annexin V binding. The same analyses were performed on RBCs that had been separated according to density using discontinuous Percoll gradients. RESULTS: During storage under blood bank conditions, RBCs become increasingly susceptible to loss of phospholipid asymmetry induced by hyperosmotic shock and energy depletion. Especially the RBCs of higher densities, that have a smaller volume and an increased HbA1c content as is typical of aged RBCs, become increasingly susceptible with storage time. CONCLUSIONS: During storage, RBCs develop an increased susceptibility to stress-induced loss of phospholipid asymmetry that is especially associated with an aging phenotype. This increased susceptibility may be responsible for the rapid disappearance of a considerable fraction of the RBCs during the first 24 hours after transfusion.


Subject(s)
Blood Preservation/methods , Erythrocyte Transfusion , Erythrocytes , Osmotic Pressure/physiology , Phosphatidylserines/metabolism , Annexin A5/metabolism , Blood Banking/methods , Energy Metabolism/physiology , Erythrocyte Membrane/metabolism , Erythrocytes/cytology , Erythrocytes/drug effects , Erythrocytes/metabolism , Flow Cytometry , Glycated Hemoglobin/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...