Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 257: 113518, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31753636

ABSTRACT

There is growing evidence that the very presence of human beings in an enclosed environment can impact air quality by affecting the concentrations of certain airborne volatile organic compounds (VOC). This influence increases considerably when humans perform different activities, such as using toiletries, or simply eating and drinking. To understand the influence of these parameters on the concentrations of selected airborne constituents, a study was performed under simulated residential conditions in an environmentally-controlled exposure room. The human subjects either simply remained for a certain time in the exposure room, or performed pre-defined activities in the room (drinking wine, doing sport, using toiletries, and preparation of a meal containing melted cheese). The impact of each activity was assessed separately using our analytical platform and exposure room under controlled environmental conditions. The results showed that prolonged human presence leads to increased levels of isoprene, TVOCs, formaldehyde and, to a lesser extent, acetaldehyde. These outcomes were further supported by results of meta-analyses of data acquired during several internal studies performed over two years. Furthermore, it was seen that the indoor concentrations of several of the selected constituents rose when the recreational and daily living activities were performed. Indeed, an increase in acetaldehyde was observed for all tested conditions, and these higher indoor levels were especially notable during wine-drinking as well as cheese meal preparation. Formaldehyde increased during the sessions involving sport, using toiletries, and cheese meal preparation. Like acetaldehyde, acrolein, crotonaldehyde and particulate matter levels rose significantly during the cheese meal preparation session. In conclusion, prolonged human residence indoors and some recreational and daily living activities caused substantial emissions of several airborne pollutants under ventilation typical for residential environments.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Acetaldehyde/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Aldehydes , Butadienes , Environmental Exposure/analysis , Formaldehyde/analysis , Hemiterpenes , Housing , Humans , Particulate Matter/analysis , Ventilation , Volatile Organic Compounds/analysis
2.
Talanta ; 158: 165-178, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27343591

ABSTRACT

Studies in environmentally controlled rooms have been used over the years to assess the impact of environmental tobacco smoke on indoor air quality. As new tobacco products are developed, it is important to determine their impact on air quality when used indoors. Before such an assessment can take place it is essential that the analytical methods used to assess indoor air quality are validated and shown to be fit for their intended purpose. Consequently, for this assessment, an environmentally controlled room was built and seven analytical methods, representing eighteen analytes, were validated. The validations were carried out with smoking machines using a matrix-based approach applying the accuracy profile procedure. The performances of the methods were compared for all three matrices under investigation: background air samples, the environmental aerosol of Tobacco Heating System THS 2.2, a heat-not-burn tobacco product developed by Philip Morris International, and the environmental tobacco smoke of a cigarette. The environmental aerosol generated by the THS 2.2 device did not have any appreciable impact on the performances of the methods. The comparison between the background and THS 2.2 environmental aerosol samples generated by smoking machines showed that only five compounds were higher when THS 2.2 was used in the environmentally controlled room. Regarding environmental tobacco smoke from cigarettes, the yields of all analytes were clearly above those obtained with the other two air sample types.


Subject(s)
Air Pollution, Indoor/analysis , Hot Temperature , Nicotiana , Tobacco Smoke Pollution/analysis , Air Pollutants/analysis , Nicotine/analysis , Particulate Matter/analysis , Pyridines/analysis , Tobacco Products , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...