Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
J Med Chem ; 57(7): 2942-52, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24601592

ABSTRACT

A series of imidazol-1-ylethylindazole sodium channel ligands were developed and optimized for sodium channel inhibition and in vitro neuroprotective activity. The molecules exhibited displacement of a radiolabeled sodium channel ligand and selectivity for blockade of the inactivated state of cloned neuronal Nav channels. Metabolically stable analogue 6 was able to protect retinal ganglion cells during optic neuritis in a mouse model of multiple sclerosis.


Subject(s)
Disease Models, Animal , Imidazoles/therapeutic use , Multiple Sclerosis/drug therapy , Neuroprotective Agents/therapeutic use , Optic Neuritis/drug therapy , Retinal Ganglion Cells/drug effects , Voltage-Gated Sodium Channels/metabolism , Animals , Female , Humans , Imidazoles/chemistry , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/complications , Multiple Sclerosis/metabolism , Optic Neuritis/etiology , Optic Neuritis/metabolism
3.
Brain ; 137(Pt 1): 92-108, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24287115

ABSTRACT

Progressive multiple sclerosis is associated with metabolic failure of the axon and excitotoxicity that leads to chronic neurodegeneration. Global sodium-channel blockade causes side effects that can limit its use for neuroprotection in multiple sclerosis. Through selective targeting of drugs to lesions we aimed to improve the potential therapeutic window for treatment. This was assessed in the relapsing-progressive experimental autoimmune encephalomyelitis ABH mouse model of multiple sclerosis using conventional sodium channel blockers and a novel central nervous system-excluded sodium channel blocker (CFM6104) that was synthesized with properties that selectively target the inflammatory penumbra in experimental autoimmune encephalomyelitis lesions. Carbamazepine and oxcarbazepine were not immunosuppressive in lymphocyte-driven autoimmunity, but slowed the accumulation of disability in experimental autoimmune encephalomyelitis when administered during periods of the inflammatory penumbra after active lesion formation, and was shown to limit the development of neurodegeneration during optic neuritis in myelin-specific T cell receptor transgenic mice. CFM6104 was shown to be a state-selective, sodium channel blocker and a fluorescent p-glycoprotein substrate that was traceable. This compound was >90% excluded from the central nervous system in normal mice, but entered the central nervous system during the inflammatory phase in experimental autoimmune encephalomyelitis mice. This occurs after the focal and selective downregulation of endothelial p-glycoprotein at the blood-brain barrier that occurs in both experimental autoimmune encephalomyelitis and multiple sclerosis lesions. CFM6104 significantly slowed down the accumulation of disability and nerve loss in experimental autoimmune encephalomyelitis. Therapeutic-targeting of drugs to lesions may reduce the potential side effect profile of neuroprotective agents that can influence neurotransmission. This class of agents inhibit microglial activity and neural sodium loading, which are both thought to contribute to progressive neurodegeneration in multiple sclerosis and possibly other neurodegenerative diseases.


Subject(s)
Benzamides/therapeutic use , Indazoles/therapeutic use , Multiple Sclerosis/drug therapy , Neuroprotective Agents/therapeutic use , Oxadiazoles/therapeutic use , Sodium Channel Blockers/therapeutic use , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Biological Specimen Banks , Brain/pathology , Carbamazepine/pharmacology , Carrier Proteins/metabolism , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , Drug Delivery Systems , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Immunohistochemistry , Mass Spectrometry , Mice , Mice, Inbred C57BL , Multiple Sclerosis/physiopathology , Optic Neuritis/physiopathology , T-Lymphocytes/drug effects , Uveitis/physiopathology , Voltage-Gated Sodium Channels/metabolism
4.
J Med Chem ; 52(9): 2694-707, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19341281

ABSTRACT

We report the discovery of a new class of neuroprotective voltage-dependent sodium channel modulators exemplified by (5-(1-benzyl-1H-indazol-3-yl)-1,2,4-oxadiazol-3-yl)methanamine 11 (CFM1178). The compounds were inhibitors of [(14)C]guanidinium ion flux in rat forebrain synaptosomes and displaced binding of the sodium channel ligand [(3)H]BW202W92. 11 and the corresponding N(2)-benzyl isomer, 38 (CFM6058), demonstrated neuroprotective activity in hippocampal slices comparable to sipatrigine. CYP450 enzyme inhibition observed with 11 was reduced with 38. In electrophysiological experiments on dissociated hippocampal neurons, these two compounds caused use- and voltage-dependent block of sodium currents. Sodium channel isoform profiling against Na(v)1.1-1.8 demonstrated that the standard sodium channel blocker lamotrigine had modest activity against Na(v)1.1, while sipatrigine was generally more potent and less selective. 11 and 38 showed potent activity against Na(v)1.6, pointing to pharmacological block of this isoform being consistent with the neuroprotective effect. 38 also showed use dependent block of Na(v)1.6 in HEK cells.


Subject(s)
Hippocampus/cytology , Indazoles/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Animals , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Drug Design , Electrophysiological Phenomena , Hippocampus/drug effects , Indazoles/chemistry , Male , Neurons/metabolism , Neuroprotective Agents/chemistry , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Quantitative Structure-Activity Relationship , Rats , Rats, Wistar , Sodium Channel Blockers/chemistry
5.
Org Lett ; 5(23): 4505-7, 2003 Nov 13.
Article in English | MEDLINE | ID: mdl-14602036

ABSTRACT

[reaction: see text] The bimetallic titanium complex [(salen)TiO](2), where salen is the ligand derived from (R,R)-cyclohexanediamine and 3,5-di-tert-butyl-salicylaldehyde, has been shown to catalyze the asymmetric addition of ethyl cyanoformate to aldehydes leading to cyanohydrin carbonates with high enantiomeric excesses.

SELECTION OF CITATIONS
SEARCH DETAIL
...