Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-11264861

ABSTRACT

Assessments of scoliosis are routinely done by means of clinical examination and full spinal x-rays. Multiple exposure to ionization radiation, however, can be hazardous to the child and is costly. Here, we explain the use of a noninvasive imaging technique, based on laser optical scanning, for quantifying the three-dimensional (3D) trunk surface topography that can be used to estimate parameters of 3D deformity of the spine. The laser optical scanning system consisted of four BIRIS laser cameras mounted on a ring moving along a vertical axis, producing a topographical mapping of the entire torso. In conjunction with the laser scans, an accurate 3D reconstruction of the spine and rib cage were developed from the digitized x-ray images. Results from 14 scoliotic patients are reported. The digitized surfaces provided the foundation data to start studying concordance of trunk surface asymmetry and spinal shape in idiopathic scoliosis.


Subject(s)
Image Processing, Computer-Assisted , Radiography/instrumentation , Ribs/diagnostic imaging , Scoliosis/diagnostic imaging , Spine/diagnostic imaging , Calibration , Equipment Design , Humans , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Lasers , Photography , Radiography/methods
2.
Prosthet Orthot Int ; 16(3): 183-8, 1992 Dec.
Article in English | MEDLINE | ID: mdl-1491952

ABSTRACT

The purpose of this investigation was to develop a numerical method for fabricating prosthetic sockets for below-knee amputees. An optical/laser digitiser scans an amputee's stump and collects three dimensional numerical data describing the surface of the limb and describing specific modification site locations. The numerical data from the laser camera representing the stump and modification sites are altered by the prosthetist using a custom computer aided design software system running on a personal computer. Using the altered numerical data a programme is created for a high resolution numerically controlled milling machine and a mould is made. The prosthetist then fabricates a socket. While the system has been tested with below-knee amputees it has been designed for application in most areas of prosthetics and orthotics. Utilising this method 15 patients were fitted. All patients subjectively stated that their "computer designed" socket fitted better than their conventionally made socket. As the research progressed and experience was gained with the system patients were normally fitted with the first socket iteration. The system overcomes five limitations existing with some of the other numerical systems: 1) accurate high resolution surface topography, 2) specific identification of subject modification sites, 3) flexible, user friendly software, 4) high resolution numerically controlled milling, and 5) integrated expansion to other prosthetic and orthotic areas.


Subject(s)
Artificial Limbs , Computer-Aided Design , Humans , Knee , Leg , Prosthesis Design
SELECTION OF CITATIONS
SEARCH DETAIL
...