Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 49(15): 4732-4740, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32207493

ABSTRACT

Global rates of diabetes mellitus are increasing, and treatment of the disease consumes a growing proportion of healthcare spending across the world. Pancreatic ß-cells, responsible for insulin production, decline in mass in type 1 and, to a more limited degree, in type 2 diabetes. However, the extent and rate of loss in both diseases differs between patients resulting in the need for the development of novel diagnostic tools, which could quantitatively assess changes in mass of ß-cells over time and potentially lead to earlier diagnosis and improved treatments. Exendin-4, a potent analogue of glucagon-like-peptide 1 (GLP-1), binds to the receptor GLP-1R, whose expression is enriched in ß-cells. GLP-1R has thus been used in the past as a means of targeting probes for a wide variety of imaging modalities to the endocrine pancreas. However, exendin-4 conjugates designed specifically for MRI contrast agents are an under-explored area. In the present work, the synthesis and characterization of an exendin-4-dota(ga)-Gd(iii) complex, GdEx, is reported, along with its in vivo behaviour in healthy and in ß-cell-depleted C57BL/6J mice. Compared to the ubiquitous probe, [Gd(dota)]-, GdEx shows selective uptake by the pancreas with a marked decrease in accumulation observed after the loss of ß-cells elicited by deleting the microRNA processing enzyme, DICER. These results open up pathways towards the development of other targeted MRI contrast agents based on similar chemistry methodology.


Subject(s)
Contrast Media/chemistry , Coordination Complexes/chemistry , Exenatide/chemistry , Gadolinium/chemistry , Insulin-Secreting Cells/pathology , Magnetic Resonance Imaging , Pancreas/diagnostic imaging , Radiopharmaceuticals/chemistry , Animals , Contrast Media/chemical synthesis , Coordination Complexes/chemical synthesis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Radiopharmaceuticals/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...