Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Microbiol Biol Educ ; 25(1): e0015523, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661415

ABSTRACT

Microorganisms are ubiquitous in nature and are central to human, animal, environmental, and planetary health. They play a particularly important role in the food chain and the production of high-quality, safe, and health-promoting foods, especially fermented foods. This important role is not always apparent to members of the public. Here, we describe Kefir4All, a citizen science project designed to provide the general public with an opportunity to expand their awareness, knowledge, and practical skills relating to microbiology, introduced through the medium of producing fermented food, i.e., milk kefir or water kefir. During the course of Kefir4All, 123 citizen scientists, from second-level school and non-school settings, participated in a study to track changes in the microbial composition of kefirs, by performing and recording details of milk kefir or water kefir fermentations they performed in their homes or schools over the 21-week project. At the start of the study, the citizen scientists were provided with milk or water kefir grains to initiate the fermentations. Both types of kefir grain are semi-solid, gelatinous-like substances, composed of exopolysaccharides and proteins, containing a symbiotic community of bacteria and yeast. The experimental component of the project was complemented by a number of education and outreach events, including career talks and a site visit to our research center (Kefir Day). At the end of the study, a report was provided to each citizen scientist, in which individualized results of their fermenting activities were detailed. A number of approaches were taken to obtain feedback and other insights from the citizen scientists. Evaluations took place before and after the Kefir4All project to gauge the citizen scientist's self-reported awareness, knowledge, and interest in microbiology and fermented foods. Further insights into the level of citizen science participation were gained through assessing the number of samples returned for analysis and the level of participation of the citizen scientists throughout the project. Notably, the survey results revealed a self-reported, increased interest in, and general knowledge of, science among the Kefir4All citizen scientists after undertaking the project and a willingness to take part in further citizen science projects. Ultimately, Kefir4All represents an example of the successful integration of citizen science into existing education and research systems.

2.
iScience ; 26(10): 108004, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37841598

ABSTRACT

A comprehensive metagenomics-based investigation of the microorganisms present within milk kefir communities from across the globe was carried out with a view to defining the milk kefir pan-metagenome, including details relating to core and non-core components. Milk kefir samples, generated by inoculating full fat, pasteurized cow's milk with 64 kefir grains sourced from 25 different countries, were analyzed. We identified core features, including a consistent pattern of domination by representatives from the species Lactobacillus helveticus or the sub-species Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lactococcus lactis subsp. lactis or Lla. cremoris subsp. cremoris in each kefir. Notably, even in kefirs where the lactococci did not dominate, they and 51 associated metabolic pathways were identified across all metagenomes. These insights can contribute to future efforts to create tailored kefir-based microbial communities for different applications and assist regulators and producers to ensure that kefir products have a microbial composition that reflects the artisanal beverage.

3.
Sci Rep ; 13(1): 7899, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193715

ABSTRACT

Nisin is a broad spectrum bacteriocin used extensively as a food preservative that was identified in Lactococcus lactis nearly a century ago. We show that orally-ingested nisin survives transit through the porcine gastrointestinal tract intact (as evidenced by activity and molecular weight determination) where it impacts both the composition and functioning of the microbiota. Specifically, nisin treatment caused a reversible decrease in Gram positive bacteria, resulting in a reshaping of the Firmicutes and a corresponding relative increase in Gram negative Proteobacteria. These changes were mirrored by the modification in relative abundance of pathways involved in acetate, butyrate (decreased) and propionate (increased) synthesis which correlated with overall reductions in short chain fatty acid levels in stool. These reversible changes that occur as a result of nisin ingestion demonstrate the potential of bacteriocins like nisin to shape mammalian microbiomes and impact on the functionality of the community.


Subject(s)
Bacteriocins , Gastrointestinal Microbiome , Lactococcus lactis , Nisin , Animals , Swine , Nisin/pharmacology , Nisin/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteriocins/pharmacology , Bacteriocins/metabolism , Gram-Positive Bacteria/metabolism , Lactococcus lactis/metabolism , Mammals/metabolism
4.
Crit Rev Microbiol ; 49(6): 693-725, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36287644

ABSTRACT

High-throughput DNA sequencing-based approaches continue to revolutionise our understanding of microbial ecosystems, including those associated with fermented foods. Metagenomic and metatranscriptomic approaches are state-of-the-art biological profiling methods and are employed to investigate a wide variety of characteristics of microbial communities, such as taxonomic membership, gene content and the range and level at which these genes are expressed. Individual groups and consortia of researchers are utilising these approaches to produce increasingly large and complex datasets, representing vast populations of microorganisms. There is a corresponding requirement for the development and application of appropriate bioinformatic tools and pipelines to interpret this data. This review critically analyses the tools and pipelines that have been used or that could be applied to the analysis of metagenomic and metatranscriptomic data from fermented foods. In addition, we critically analyse a number of studies of fermented foods in which these tools have previously been applied, to highlight the insights that these approaches can provide.


Subject(s)
Fermented Foods , Microbiota , Microbiota/genetics , Metagenome , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods
5.
Front Microbiol ; 10: 273, 2019.
Article in English | MEDLINE | ID: mdl-30842760

ABSTRACT

Clostridium difficile is a common cause of health-care acquired diarrhea, resulting in a spectrum of disease from mild diarrhea to life-threatening illness. Sixty Lactobacillus strains were screened for anti-C. difficile activity using a co-culture method. Based on their ability to inhibit C. difficile, L. gasseri APC 678 and L. rhamnosus DPC 6111 were selected for study in a murine model of C. difficile infection. L. gasseri ATCC 33323, was included as a control. It was established that, relative to control mice not fed Lactobacillus, feeding with L. gasseri APC 678 resulted in a significant reduction by day 7 (8-fold, p = 0.017) of viable C. difficile VPI 10463 in the feces of mice. In contrast, neither L. rhamnosus DPC 6111 nor L. gasseri ATCC 33323 significantly reduced fecal C. difficile shedding. Sequencing of the cecal microbiota showed that in mice fed L. gasseri APC 678 there was a significant increase in bacterial diversity across a number of indices when compared to the control or other Lactobacillus-fed groups. There was no significant change in the relative abundance of Firmicutes or Bacteroidetes in the group fed L. gasseri APC 678 relative to the control, while the groups fed L. rhamnosus DPC 6111 or L. gasseri ATCC 33323 showed a significant decrease in the relative abundance of Firmicutes (p = 0.002 and p = 0.019, respectively) and a significant increase in Bacteroidetes (p = 0.002 and p = 0.023, respectively). These results highlight the potential of L. gasseri APC 678 as a live therapeutic agent to target C. difficile infection.

6.
Int J Mol Sci ; 19(6)2018 06 11.
Article in English | MEDLINE | ID: mdl-29891784

ABSTRACT

n-3 highly unsaturated fatty acids (n-3 HUFA) directly and indirectly regulate lipid metabolism, energy balance and the inflammatory response. We investigated changes to the n-3 HUFA score of healthy adults, induced by different types and amounts of conjugated linoleic acid (CLA)-enriched (ENCH) cheeses consumed for different periods of time, compared to dietary fish oil (FO) pills (500 mg, each containing 100 mg of eicosapentaenoic and docosahexaenoic acids­EPA+DHA) or α-linolenic acid (ALA)-rich linseed oil (4 g, containing 2 g of ALA). A significant increase in the n-3 HUFA score was observed, in a dose-dependent manner, after administration of the FO supplement. In terms of the impact on the n-3 HUFA score, the intake of ENCH cheese (90 g/day) for two or four weeks was equivalent to the administration of one or two FO pills, respectively. Conversely, the linseed oil intake did not significantly impact the n-3 HUFA score. Feeding ENCH cheeses from different sources (bovine, ovine and caprine) for two months improved the n-3 HUFA score by increasing plasma DHA, and the effect was proportional to the CLA content in the cheese. We suggest that the improved n-3 HUFA score resulting from ENCH cheese intake may be attributed to increased peroxisome proliferator-activated receptor alpha (PPAR-α) activity. This study demonstrates that natural ENCH cheese is an alternative nutritional source of n-3 HUFA in humans.


Subject(s)
Cheese/analysis , Diet , Fatty Acids, Omega-3/blood , Linoleic Acids, Conjugated/administration & dosage , Adult , Female , Humans , Male , PPAR alpha/genetics , PPAR alpha/metabolism
7.
J Antimicrob Chemother ; 68(1): 214-21, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22949626

ABSTRACT

OBJECTIVES: The human intestinal microbiota composition alters naturally with age, but is unusually perturbed by antibiotic therapy. The impact of antibiotic therapy on the composition of the intestinal microbiota of a cross-section of elderly Irish subjects (n = 185, ≥ 65 years) was investigated, taking into consideration their residence location. METHODS: Forty-two of the 185 elderly subjects were treated with at least one antibiotic within 1 month prior to faecal microbiota profiling. The residence locations of the subjects varied from long-term nursing care and rehabilitation wards to day hospitals and the community. RESULTS: Culture-dependent methods indicated that faecal Bifidobacterium spp. numbers were significantly reduced following antibiotic treatment (P = 0.004, 7-fold reduction), while levels of Lactobacillus spp. and Enterobacteriaceae were unaffected. The largest decrease in Bifidobacterium spp. numbers was linked to the administration of nucleic acid synthesis inhibitors (P = 0.004, 23-fold reduction). Microbiota profiling revealed a significant compositional change across nine genera following antibiotic therapy, including a relative increase in Lactobacillus spp. (P = 0.031), as well as a decrease in the number of genera identified in the antibiotic-treated subjects (n = 58), when compared with untreated subjects (n = 79). More alterations in the intestinal microbiota were observed post-nucleic acid synthesis inhibitor therapy, most notably a decrease in relative Faecalibacterium spp. numbers (P < 0.001). CONCLUSIONS: The impact of antibiotic therapy on the intestinal microbiota in the elderly should be considered for long-term health effects, and differential susceptibility may require the development of products (e.g. prebiotics and probiotics) for at-risk subjects.


Subject(s)
Anti-Bacterial Agents/pharmacology , Feces/microbiology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Metagenome/drug effects , Aged , Aged, 80 and over , Female , Humans , Ireland/epidemiology , Male , Metagenome/physiology , Time Factors
8.
J Med Microbiol ; 62(Pt 3): 457-466, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23222860

ABSTRACT

The aim of this study was to investigate the diversity and composition of the intestinal microbiota of elderly subjects using a combination of culture-dependent techniques and 16S rRNA gene amplicon sequencing. The study was performed as part of the ELDERMET project, in which 368 faecal samples were assessed for viable numbers of Bifidobacterium spp., Lactobacillus spp. and Enterobacteriaceae on selective agar. However, the Bifidobacterium selective medium used also supported the growth of Clostridium perfringens, which appeared as distinct colonies and were subsequently characterized phenotypically and genotypically. All the isolates were confirmed as toxin biotype A producers. In addition, three isolates tested also had the genetic determinants for the ß2 toxin. Of the 368 faecal samples assessed, C. perfringens was detected in 28 samples (7.6%). Moreover, C. perfringens was observed in samples from subjects in all the residence locations assessed but was most prevalent in subjects from long-stay residential care, with 71.4% of the samples (63.2% of the subjects) being from this residence location, and with a shedding level in excess of 10(6) c.f.u. (g faeces)(-1). Microbiota profiling revealed some significant compositional changes across both the family and genus taxonomic levels between the C. perfringens-positive and -negative datasets. Levels of culturable Bifidobacterium spp. and Lactobacillus spp. were significantly (P<0.05) lower in the C. perfringens-positive samples. Sequence-based methods also confirmed a significant difference in the Bifidobacterium spp. level (P<0.05) between both datasets. Taken together, these data suggest that a high viable count [>10(6) c.f.u. (g faeces)(-1)] of C. perfringens in stool samples may be indicative of a less healthy microbiota in the intestine of elderly people in long-stay residential care.


Subject(s)
Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Clostridium perfringens/isolation & purification , Feces/microbiology , Aged , Bacterial Toxins/classification , Bacterial Toxins/genetics , Bacteriological Techniques , Carrier State/epidemiology , Carrier State/microbiology , Clostridium Infections/transmission , Clostridium perfringens/classification , Clostridium perfringens/genetics , Culture Media/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Electrophoresis, Gel, Pulsed-Field , Genotype , Humans , Ireland/epidemiology , Prevalence , RNA, Ribosomal, 16S/chemistry
9.
Nature ; 488(7410): 178-84, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22797518

ABSTRACT

Alterations in intestinal microbiota composition are associated with several chronic conditions, including obesity and inflammatory diseases. The microbiota of older people displays greater inter-individual variation than that of younger adults. Here we show that the faecal microbiota composition from 178 elderly subjects formed groups, correlating with residence location in the community, day-hospital, rehabilitation or in long-term residential care. However, clustering of subjects by diet separated them by the same residence location and microbiota groupings. The separation of microbiota composition significantly correlated with measures of frailty, co-morbidity, nutritional status, markers of inflammation and with metabolites in faecal water. The individual microbiota of people in long-stay care was significantly less diverse than that of community dwellers. Loss of community-associated microbiota correlated with increased frailty. Collectively, the data support a relationship between diet, microbiota and health status, and indicate a role for diet-driven microbiota alterations in varying rates of health decline upon ageing.


Subject(s)
Aging/physiology , Diet/statistics & numerical data , Feces/microbiology , Health Status , Intestines/microbiology , Metagenome/physiology , Aged , Aged, 80 and over , Cohort Studies , Diet Surveys , Fruit , Geriatric Assessment , Health , Health Surveys , Homes for the Aged , Hospitals, Community , Humans , Meat , Rehabilitation Centers , Surveys and Questionnaires , Vegetables
10.
Am J Clin Nutr ; 89(5): 1393-401, 2009 May.
Article in English | MEDLINE | ID: mdl-19357220

ABSTRACT

BACKGROUND: Recent reports suggest that the metabolic activity of the gut microbiota may contribute to the pathogenesis of obesity and hepatic steatosis. OBJECTIVE: The objective was to determine whether the fat composition of host tissues might be influenced by oral administration of commensal bifidobacteria previously shown by us to produce bioactive isomers of conjugated linoleic acid (CLA). DESIGN: Murine trials were conducted in which linoleic acid-supplemented diets were fed with or without Bifidobacterium breve NCIMB 702258 (daily dose of 10(9) microorganisms) to healthy BALB/c mice and to severe combined immunodeficient mice for 8-10 wk. To ensure that the observations were not peculiar to mice, a similar trial was conducted in weanling pigs over 21 d. Tissue fatty acid composition was assessed by gas-liquid chromatography. RESULTS: In comparison with controls, there was an increase in cis-9, trans-11 CLA in the livers of the mice and pigs after feeding with linoleic acid in combination with B. breve NCIMB 702258 (P < 0.05). In addition, an altered profile of polyunsaturated fatty acid composition was observed, including higher concentrations of the omega-3 (n-3) fatty acids eicosapentaenoic acid and docosahexaenoic acid in adipose tissue (P < 0.05). These changes were associated with reductions in the proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma (P < 0.05). CONCLUSIONS: These results are consistent with the concept that the metabolome is a composite of host and microbe metabolic activity and that the influence of the microbiota on host fatty acid composition can be manipulated by oral administration of CLA-producing microorganisms.


Subject(s)
Adipose Tissue/metabolism , Adipose Tissue/microbiology , Bifidobacterium/metabolism , Fatty Acids/metabolism , Liver/metabolism , Liver/microbiology , Animal Feed , Animals , Feces/microbiology , Lymphocytes/immunology , Lymphocytes/microbiology , Male , Mice , Mice, Inbred BALB C , Swine
11.
Lipids ; 44(3): 249-56, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19048324

ABSTRACT

In this study, we assessed the ability of six strains of bifidobacteria (previously shown by us to possess the ability to convert linoleic acid to c9, t11-conjugated linoleic acid (CLA) to grow in the presence of alpha-linolenic acid and to generate conjugated isomers of the fatty acid substrate during fermentation for 42 h. The six strains of bifidobacteria were grown in modified MRS (mMRS) containing alpha-linolenic acid for 42 h at 37 degrees C, after which the fatty acid composition of the growth medium was assessed by gas liquid chromatography (GLC). Indeed, following fermentation of one of the strains, namely Bifidobacterium breve NCIMB 702258, in the presence of 0.41 mg/ml alpha-linolenic acid, 79.1% was converted to the conjugated isomer, C18:3 c9, t11, c15 conjugated alpha-linolenic acid (CALA). To examine the inhibitory effect of the fermented oils produced, SW480 colon cancer cells were cultured in the presence of the extracted fermented oil (10-50 microg/ml) for 5 days. The data indicate an inhibitory effect on cell growth (p

Subject(s)
Bifidobacterium/chemistry , Colonic Neoplasms/prevention & control , Intestines/microbiology , alpha-Linolenic Acid/pharmacology , Biotransformation , Cell Division/drug effects , Cell Line, Tumor , Colonic Neoplasms/pathology , Humans , alpha-Linolenic Acid/isolation & purification , alpha-Linolenic Acid/metabolism
12.
Nutr Cancer ; 56(1): 95-102, 2006.
Article in English | MEDLINE | ID: mdl-17176223

ABSTRACT

Bifidobacterium breve species of human intestinal origin have the ability to synthesize cis-9, trans-11 (c9, t11) conjugated linoleic acid (CLA) from free linoleic acid. In this study, the ability of Bifidobacterium species to isomerize C(18) polyunsaturated fatty acids was investigated, and the antiproliferative activities of the two main microbially produced CLA isomers were assessed. Linoleic acid was converted principally to c9, t11 CLA and lesser amounts of t9, t11 CLA, whereas c9, t11 CLA was converted mainly to t9, t11 CLA. Likewise, t10, c12 CLA was converted principally to t9, t11 CLA, which was incorporated into the bacterial cell membranes. To examine the antiproliferative effect of the two main CLA isomers formed, SW480 and HT-29 human colon cancer cells were cultured in the presence of c9, t11 CLA and t9, t11 CLA. The t9, t11 CLA had a more potent antiproliferative effect than c9, t11 CLA. It is tempting to suggest that the ability of Bifidobacterium to produce such bioactive metabolites may be associated with the beneficial effects of bifidobacteria present in the human gastrointestinal tract.


Subject(s)
Antineoplastic Agents/pharmacology , Bifidobacterium/metabolism , Cell Division/drug effects , HT29 Cells/drug effects , Linoleic Acids, Conjugated/biosynthesis , Linoleic Acids, Conjugated/pharmacology , Antineoplastic Agents/chemistry , Colonic Neoplasms/drug therapy , Humans , Isomerism , Linoleic Acids, Conjugated/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...