Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 10(4): e1003595, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24763195

ABSTRACT

In the presence of oxygen (O2) the model bacterium Escherichia coli is able to conserve energy by aerobic respiration. Two major terminal oxidases are involved in this process - Cyo has a relatively low affinity for O2 but is able to pump protons and hence is energetically efficient; Cyd has a high affinity for O2 but does not pump protons. When E. coli encounters environments with different O2 availabilities, the expression of the genes encoding the alternative terminal oxidases, the cydAB and cyoABCDE operons, are regulated by two O2-responsive transcription factors, ArcA (an indirect O2 sensor) and FNR (a direct O2 sensor). It has been suggested that O2-consumption by the terminal oxidases located at the cytoplasmic membrane significantly affects the activities of ArcA and FNR in the bacterial nucleoid. In this study, an agent-based modeling approach has been taken to spatially simulate the uptake and consumption of O2 by E. coli and the consequent modulation of ArcA and FNR activities based on experimental data obtained from highly controlled chemostat cultures. The molecules of O2, transcription factors and terminal oxidases are treated as individual agents and their behaviors and interactions are imitated in a simulated 3-D E. coli cell. The model implies that there are two barriers that dampen the response of FNR to O2, i.e. consumption of O2 at the membrane by the terminal oxidases and reaction of O2 with cytoplasmic FNR. Analysis of FNR variants suggested that the monomer-dimer transition is the key step in FNR-mediated repression of gene expression.


Subject(s)
Escherichia coli/metabolism , Oxygen/metabolism , Transcription Factors/metabolism , Escherichia coli/genetics , Genes, Bacterial , Operon
2.
Integr Biol (Camb) ; 4(1): 53-64, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22052476

ABSTRACT

Many of the complex systems found in biology are comprised of numerous components, where interactions between individual agents result in the emergence of structures and function, typically in a highly dynamic manner. Often these entities have limited lifetimes but their interactions both with each other and their environment can have profound biological consequences. We will demonstrate how modelling these entities, and their interactions, can lead to a new approach to experimental biology bringing new insights and a deeper understanding of biological systems.


Subject(s)
Models, Biological , Systems Biology/methods , Animals , Software
3.
Brief Bioinform ; 11(3): 334-47, 2010 May.
Article in English | MEDLINE | ID: mdl-20123941

ABSTRACT

Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with 'bottom-up' simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simulation of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format. This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems, FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the possibility of real-time visualisation for simple visual face-validation.


Subject(s)
Cell Physiological Phenomena , Computer Graphics , Computer Simulation , Models, Biological , Software , User-Computer Interface , Algorithms , Systems Integration
4.
Biosystems ; 93(1-2): 141-50, 2008.
Article in English | MEDLINE | ID: mdl-18487010

ABSTRACT

Simulation software is often a fundamental component in systems biology projects and provides a key aspect of the integration of experimental and analytical techniques in the search for greater understanding and prediction of biology at the systems level. It is important that the modelling and analysis software is reliable and that techniques exist for automating the analysis of the vast amounts of data which such simulation environments generate. A rigorous approach to the development of complex modelling software is needed. Such a framework is presented here together with techniques for the automated analysis of such models and a process for the automatic discovery of biological phenomena from large simulation data sets. Illustrations are taken from a major systems biology research project involving the in vitro investigation, modelling and simulation of epithelial tissue.


Subject(s)
Computational Biology/methods , Models, Biological , Cell Cycle , Cell Differentiation , Cells, Cultured , Humans , Keratinocytes/cytology , Reproducibility of Results
5.
J R Soc Interface ; 4(17): 1077-92, 2007 Dec 22.
Article in English | MEDLINE | ID: mdl-17374590

ABSTRACT

Closely coupled in vitro and in virtuo models have been used to explore the self-organization of normal human keratinocytes (NHK). Although it can be observed experimentally, we lack the tools to explore many biological rules that govern NHK self-organization. An agent-based computational model was developed, based on rules derived from literature, which predicts the dynamic multicellular morphogenesis of NHK and of a keratinocyte cell line (HaCat cells) under varying extracellular Ca++ concentrations. The model enables in virtuo exploration of the relative importance of biological rules and was used to test hypotheses in virtuo which were subsequently examined in vitro. Results indicated that cell-cell and cell-substrate adhesions were critically important to NHK self-organization. In contrast, cell cycle length and the number of divisions that transit-amplifying cells could undergo proved non-critical to the final organization. Two further hypotheses, to explain the growth behaviour of HaCat cells, were explored in virtuo-an inability to differentiate and a differing sensitivity to extracellular calcium. In vitro experimentation provided some support for both hypotheses. For NHKs, the prediction was made that the position of stem cells would influence the pattern of cell migration post-wounding. This was then confirmed experimentally using a scratch wound model.


Subject(s)
Keratinocytes/cytology , Keratinocytes/physiology , Models, Biological , Systems Biology , Cell Differentiation , Cell Division , Cell Line , Computer Simulation , Humans , Stem Cells/cytology , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...