Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 13: 1039401, 2022.
Article in English | MEDLINE | ID: mdl-36531182

ABSTRACT

Elevated atmospheric CO2 as a result of human activity is dissolving into the world's oceans, driving a drop in pH, and making them more acidic. Here we present the first data on the impacts of ocean acidification on a bathyal species of octopus Muusoctopus leioderma. A recent discovery of a shallow living population in the Salish Sea, Washington United States allowed collection via SCUBA and maintenance in the lab. We exposed individual Muusoctopus leioderma to elevated CO2 pressure (pCO2) for 1 day and 7 days, measuring their routine metabolic rate (RMR), critical partial pressure (P crit ), and oxygen supply capacity (α). At the time of this writing, we believe this is the first aerobic metabolic data recorded for a member of Muusoctopus. Our results showed that there was no change in either RMR, P crit or α at 1800 µatm compared to the 1,000 µatm of the habitat where this population was collected. The ability to maintain aerobic physiology at these relatively high levels is discussed and considered against phylogeny and life history.

SELECTION OF CITATIONS
SEARCH DETAIL
...