Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Biomed Mater Res A ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864151

ABSTRACT

Infection is a major concern in surgery involving grafting and should be considered thoroughly when designing biomaterials. There is considerable renewed interest in silver nanoparticles (AgNPs) owing to their ability to potentiate antibacterial properties against multiple bacterial strains. This study aimed to develop two antibacterial bone regenerative scaffolds by integrating AgNPs in bovine bone particles (BBX) (Product 1), and a light cross-linked hydrogel GelMA (Product 2). The constructs were characterized using scanning electron microscopy. Metabolic activity of osteoblasts and osteoclasts on the constructs was investigated using PrestoBlue™. Disk diffusion assay was conducted to test the antibacterial properties. The regenerative capacity of the optimized AgNP functionalized BBX and GelMA were tested in a rabbit cranial 6 mm defect model. The presence of AgNPs appears to enhance proliferation of osteoblasts compared to AgNP free controls in vitro. We established that AgNPs can be used at a 100 µg dose that inhibits bacteria, with minimal adverse effects on the bone cells. Our rabbit model revealed that both the BBX and GelMA hydrogels loaded AgNPs were biocompatible with no signs of necrosis or inflammatory response. Grafts functionalized with AgNPs can provide antibacterial protection and simultaneously act as a scaffold for attachment of bone cells.

2.
J Biomed Mater Res A ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466022

ABSTRACT

The physicochemical properties of grafting materials affect the quality of the osteointegration, resorption rate, and the new bone (NB) formation. This study assessed the physicochemical properties and integration of a low temperature deproteinized bovine bone xenograft (BBX), referred to as optimized MoaBone® (OMB). This novel BBX was physiochemically characterized both pre and post chemical bleaching and sterilization by gamma irradiation. OMB was compared to two commercial BBX; Bio-Oss® (BO) and MoaBone® (MB) using a rabbit cranial model. Residual graft and NB were quantified using histology and micro-computed tomography. Results showed that chemical treatment and gamma irradiation had limited effect on the surface texture. A significant decrease in the collagen content was detected post chemical treatment and in the carbonate content post gamma irradiation. There was no evidence of inflammatory infiltrate, necrosis, or connective tissue encapsulation, and a significant increase of NB in all grafted sites as compared to untreated defects could be observed. However, there was no statistically significant difference between the grafted sites. We conclude that chemical treatment and terminal sterilization strongly impact the final graft's properties. OMB graft showed equivalence with BO for in vivo bone formation and potentially results in lower levels of graft retention.

3.
Arch Oral Biol ; 153: 105738, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37295140

ABSTRACT

OBJECTIVE: To compare key markers of bone remodelling in a sheep tooth extraction model for sockets left to heal naturally or grafted with the bovine-derived xenograft Bio-Oss® covered with a collagen Bio-Gide® membrane. DESIGN: Right side premolar teeth were removed from thirty Romney-cross ewes. Standardised sockets in each sheep were randomly allocated treatments, a grafted test and an empty control. At 4-, 8- and 16-weeks sheep were euthanized and tissue collected (N = 10/group). RANK, RANKL and OPG immunohistochemical analysis was performed (n = 3). RANK, RANKL, OPG, COL1A1, TIMP3, SP7 and MSX2 mRNA expression levels were determined using RT2-qPCR assays (n = 3). RESULTS: Histologically, more new woven bone was observed in the test group at all time points. Strong RANK and RANKL expression was found in both groups; at all time points with stronger RANK staining in the test group at 8 and 16 weeks. Strong OPG staining was localized to both osteoblasts and connective tissues. RANK receptor mRNA was expressed at a lower level in the test group (-4.26-fold; p = 0.02) at 4 weeks and SP7 at 16 weeks (-2.89-fold; p = 0.04). COL1A1 and TIMP3 mRNA expression increased significantly over time in the control group (p = 0.045, F = 5.4 and p = 0.003, F = 42.2 respectively). CONCLUSION: Socket healing over time was comparable. The sheep tooth extraction model was found to be suitable for the evaluation of changes in the alveolar bone at the molecular level.


Subject(s)
Alveolar Bone Loss , Bone Substitutes , Animals , Humans , Sheep , Female , Cattle , Tooth Socket/surgery , Tooth Socket/pathology , Wound Healing , Periodontal Ligament , Bone Remodeling , Tooth Extraction , Alveolar Bone Loss/pathology
4.
Bioengineering (Basel) ; 10(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37106660

ABSTRACT

Large oral bone defects require grafting of bone blocks rather than granules to give physically robust, biocompatible and osteoconductive regeneration. Bovine bone is widely accepted as a source of clinically appropriate xenograft material. However, the manufacturing process often results in both reduced mechanical strength and biological compatibility. The aim of this study was to assess bovine bone blocks at different sintering temperatures and measure the effects on mechanical properties and biocompatibility. Bone blocks were divided into four groups; Group 1: Control (Untreated); Group 2: Initial boil for 6 h; Group 3: Boil 6 h followed by sintering at 550 °C for 6 h; Group 4: Boil 6 h followed by sintering at 1100 °C for 6 h. Samples were assessed for their purity, crystallinity, mechanical strength, surface morphology, chemical composition, biocompatibility and clinical handling properties. Statistical analysis was performed using one-way ANOVA and post-hoc Tukey's tests for normally distributed and Friedman test for abnormally distributed quantitative data from compression tests and PrestoBlue™ metabolic activity tests. The threshold for statistical significance was set at p < 0.05. The results showed that higher temperature sintering (Group 4) removed all organic material (0.02% organic components and 0.02% residual organic components remained) and increased crystallinity (95.33%) compared to Groups 1-3. All test groups (Group 2-4) showed decreased mechanical strength (MPa: 4.21 ± 1.97, 3.07 ± 1.21, 5.14 ± 1.86, respectively) compared with raw bone (Group 1) (MPa: 23.22 ± 5.24, p <0.05), with micro-cracks seen under SEM in Groups 3 and 4. Group 4 had the highest biocompatibility (p < 0.05) with osteoblasts as compared to Group 3 at all time points in vitro. Clinical handling tests indicated that Group 4 samples could better withstand drilling and screw placement but still demonstrated brittleness compared to Group 1. Hence, bovine bone blocks sintered at 1100 °C for 6 h resulted in highly pure bone with acceptable mechanical strength and clinical handling, suggesting it is a viable option as a block grafting material.

5.
Genes (Basel) ; 14(2)2023 01 20.
Article in English | MEDLINE | ID: mdl-36833199

ABSTRACT

The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.


Subject(s)
Cytoskeleton , rho-Associated Kinases , rho-Associated Kinases/chemistry , rho-Associated Kinases/metabolism , rho-Associated Kinases/pharmacology , Cytoskeleton/metabolism , Microtubules/metabolism , Signal Transduction , Actin Cytoskeleton/metabolism
6.
Nanomaterials (Basel) ; 13(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36839073

ABSTRACT

There is a need to develop bifunctional scaffolds that provide antibacterial protection while encouraging host cell attachment/proliferation. This study evaluates HyStem®-C, and photo-cross-linked GelMA hydrogels for encapsulation and stabilisation of silver nanoparticles (AgNPs). We studied the behaviour of AgNPs and matrix interactions within both hydrogel systems. The cell viability of encapsulated human gingival fibroblasts (HGFs) was determined by Prestoblue® assay and live/dead staining. The release of AgNPs was monitored by inductively coupled plasma-mass spectroscopy. The antibacterial properties of the GelMA-AgNP constructs were determined using disc diffusion. Even distribution of AgNPs in GelMA induced a significant decrease in cell viability (p < 0.0001), whereas AgNP aggregates did not induce cytotoxicity in HyStem®-C. AgNPs doses ≥ 0.5 µg/mL in GelMA were significantly toxic to the HGFs (p < 0.0001). The release of AgNPs from GelMA after 48 h was 20% w/w for 0.1 µg/mL and 51% for 100 µg/mL of AgNPs. At ≥5 µg/mL, a significant intra-construct bactericidal effect was observed. The disc diffusion assay shows that GelMA-incorporated AgNPs were found to be effective against both Escherichia coli and Staphylococcus aureus at 50 and 100 µg/mL, respectively. Visible photo-cross-linked GelMA stably incorporated AgNPs to provide an antimicrobial regenerative construct for oral applications.

7.
J Biomater Sci Polym Ed ; 34(12): 1702-1715, 2023 08.
Article in English | MEDLINE | ID: mdl-36794303

ABSTRACT

Bone substitute materials have been extensively used for bone regeneration over the past 50 years. The development of novel materials, fabrication technologies and the incorporation and release of regenerative cytokines, growth factors, cells and antimicrobials has been driven by the rapid development in the field of additive manufacturing technology. There are still however, significant challenges that need addressing, including ways to better mediate the rapid vascularization of bone scaffolds to enhance subsequent regeneration and osteogenesis. Increasing construct porosity can accelerate the development of blood vessels in the scaffold, but doing so also weakens the constructs mechanical properties. A novel design for promoting rapid vascularization is to fabricate custom-made hollow channels as bone scaffolds. Summarized here are the current developments in hollow channels scaffold, including their biological attributes, physio-chemical properties, and effects on regeneration. An overview of recent developments in scaffold fabrication as they relate to hollow channel constructs and their structural features will be introduced with an emphasis on attributes that enhance new bone and vessel formation. Furthermore, the potential to enhance angiogenesis and osteogenesis by replicating the structure of real bone will be highlighted.


Subject(s)
Bone and Bones , Tissue Scaffolds , Tissue Scaffolds/chemistry , Osteogenesis , Bone Regeneration , Porosity , Tissue Engineering
8.
J Periodontal Res ; 58(1): 109-121, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36411509

ABSTRACT

OBJECTIVE AND BACKGROUND: Resorption of alveolar bone after tooth extraction is a common problem often requiring bone grafting. The success of the grafting procedures is dependent on multiple factors including the presence of growth factors. This is the first in vivo study to investigate the role of the pleiotrophin family of cytokines in alveolar bone regeneration. This research investigated the role of the pleiotrophin-midkine (PTN-MDK) axis during osteogenesis, with and without a grafting material, after tooth extraction in a sheep model. METHODS: Thirty Romney-cross ewes were anesthetized, and all premolar teeth on the right side were extracted. The sockets were randomized to controls sites with no treatment and test sites with Bio-Oss® graft material and Bio-Gide® membrane. Samples were harvested after sacrificing animals 4, 8, and 16 weeks post-grafting (n = 10 per time-point). Tissue for qRT2 -PCR gene analysis was recovered from the socket next to the first molar using a trephine (Ø = 2 mm). Each socket was fixed, decalcified, paraffin-embedded, and sectioned. Immunohistochemistry was conducted to localize both PTN and MDK along with their receptors, protein tyrosine phosphatase receptor type Z1 (PTPRZ1), ALK receptor tyrosine kinase (ALK), and notch receptor 2 (NOTCH2). RESULTS: Within the healing sockets, high expression of genes for PTN, MDK, NOTCH2, and ALK was found at all time-points and in both grafted and non-grafted sites, while PTPRZ1 was only expressed at low levels. The relative gene expression of the PTN family of cytokines was not statistically different at the three time-points between test and control groups (p > .05). Immunohistochemistry found PTN and MDK in association with new bone, NOTCH2 in the connective tissue, and PTPRZ1 and ALK in association with cuboidal osteoblasts involved in bone formation. CONCLUSIONS: The PTN-MDK axis was highly expressed in both non-grafted and grafted sockets during osteogenesis in a sheep model of alveolar bone regeneration with no evidence that grafting significantly affected expression. The activation of NOTCH2 and PTPRZ1 receptors may be important during bone regeneration in vivo. The discovery of the PTN-MDK axis as important during alveolar bone regeneration is novel and opens up new avenues of research into these stably expressed highly active cytokines. Growth factor supplementation with PTN and/or MDK during healing may be an approach for enhanced regeneration or to initiate healing where delayed.


Subject(s)
Cytokines , Tooth Socket , Animals , Female , Cytokines/metabolism , Intercellular Signaling Peptides and Proteins , Midkine , Receptor Protein-Tyrosine Kinases , Sheep , Tooth Extraction , Tooth Socket/surgery
9.
Methods Mol Biol ; 2588: 407-415, 2023.
Article in English | MEDLINE | ID: mdl-36418700

ABSTRACT

Growing adipose-derived stem cells (ADSC) in serum-free conditions is important as it represents a way of expanding multipotent cells in a clinical grade medium. Most cultured ADSC are expanded and tested in serum-containing media, which can pose significant health risks if these cells were used in clinical applications. Moreover, cells grown in serum-free conditions behave very different than those cultured in serum-containing media. Here, we present a technique to culture adipose-derived stem cells in serum-free conditions. The methods described in this chapter were optimized for ovine ADSC. The appropriate optimization should be done for other cell lines.


Subject(s)
Adipocytes , Adipose Tissue , Animals , Sheep , Stem Cells , Immunologic Tests , Multipotent Stem Cells
10.
Methods Mol Biol ; 2588: 417-427, 2023.
Article in English | MEDLINE | ID: mdl-36418701

ABSTRACT

The use of quantitative real-time reverse transcriptase PCR (qRT2-PCR) for the identification of differentially regulated genes is a powerful technology. The protocol presented here uses qRT2-PCR gene arrays to investigate the regulation of 84 angiogenic related genes in human primary alveolar osteoblasts following treatment with the bisphosphonate, zoledronic acid, and geranylgeraniol (GGOH). GGOH has potential as a therapeutic agent for medication-related osteonecrosis of the jaw, a serious side effect resulting from treatment for metastatic cancer (Zafar S, Coates DE, Cullinan MP, Drummond BK, Milne T, Seymour GJ. J Oral Pathol Med 43:711-721, 2014). The isolation of the primary osteoblast cells follows the methods described by Dillon et al. (Method Mol Biol 816:3-18, 2012) with a new RNA extraction technique described fully. The method highlights the importance of obtaining high-quality RNA which is DNA-free. Relative levels of gene expression are normalized against selected reference genes (HKG) and a number of examples of how fold regulation (2-ΔΔCq) and gene expression level (2-ΔCq) data can be presented are given.


Subject(s)
Diphosphonates , Osteoblasts , Humans , Zoledronic Acid , Polymerase Chain Reaction
11.
Materials (Basel) ; 15(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35454491

ABSTRACT

Bovine bone grafts (BBX) require protein removal as part of the manufacturing process to reduce antigenicity and, in consequence, to be safely used in humans. Deproteinisation may have direct effects on the characteristics of the bone material and on in vivo material performance. This research aimed to comprehensively study the physicochemical and mechanical properties of BBX processed at low deproteinisation processing temperatures. Cubes of bovine bone (8 mm3) were treated with temperatures between 100 °C and 220 °C at 30 °C intervals and with pressures ranging from 1.01 to 24.58 Bar. The samples were characterised topographically and mechanically using scanning electron microscopy (SEM), atomic force microscopy (AFM), and uniaxial bending tests. The organic content and the chemical composition were determined using thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). X-ray diffraction (XRD) and FTIR were also used to quantitatively determine the specimen crystallinity. Increasing temperature/pressure was associated with decreasing protein levels and compressive strength and increasing surface irregularities and crystallinity. The findings suggest that low-temperature processed bone is likely to exhibit a rapid in vivo degradation rate. The deproteinisation temperature can be adjusted to tailor the graft properties for specific applications.

12.
Materials (Basel) ; 15(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35407837

ABSTRACT

Ideal bone grafting scaffolds are osteoinductive, osteoconductive, and encourage osteogenesis through the remodeling processes of bone resorption, new bone formation, and successful integration or replacement; however, achieving this trifecta remains challenging. Production methods of bone grafts, such as thermal processing, can have significant effects on the degree of cell-surface interactions via wide-scale changes in the material properties. Here, we investigated the effects of small incremental changes at low thermal processing temperatures on the degree of osteoclast and osteoblast attachment, proliferation, and differentiation. Bovine bone scaffolds were prepared at 100, 130, 160, 190, and 220 °C and compared with a commercial control, Bio-Oss®. Osteoclast attachment and activity were significantly higher on lower temperature processed bone and were not present ≥190 °C. The highest osteoblast proliferation and differentiation were obtained from treatments at 130 and 160 °C. Similarly, qRT2-PCR assays highlighted osteoblasts attached to bone processed at 130 and 160 °C as demonstrating the highest osteogenic gene expression. This study demonstrated the significant effects of small-scale processing changes on bone graft materials in vitro, which may translate to a tailored approach of cellular response in vivo.

13.
Bone ; 154: 116181, 2022 01.
Article in English | MEDLINE | ID: mdl-34509689

ABSTRACT

Disease and trauma leading to tooth loss and destruction of supporting bone is a significant oral handicap, which may be addressed through surgical therapies that aim to regenerate the lost tissue. Whilst complete regeneration of teeth is still aspirational, regeneration of supporting structures (dental pulp, cementum, periodontal ligament, bone) is becoming commonplace, both for teeth and for titanium dental implants that are used to replace teeth. Most grafting materials are essentially passive, however the next generation of oral regenerative devices will combine non-antibiotic antimicrobials and/or osteogenic or inductive factors and/or appropriate multipotential stem cells. The review gives an overview of the approaches taken, including fabrication of novel scaffolds, incorporation of growth factors and cell-based therapies, and discusses the preclinical animal models we employ in the development pathway.


Subject(s)
Tissue Engineering , Tooth , Animals , Dental Pulp , Intercellular Signaling Peptides and Proteins , New Zealand , Periodontal Ligament
14.
Arch Oral Biol ; 134: 105335, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34891102

ABSTRACT

OBJECTIVE: To investigate the in vitro effects of inhibiting galectin-1 using the small-molecule inhibitor OTX008 on oral squamous cell carcinoma (OSCC) cell lines and the role of the MAPK pathway. METHODS: One normal oral keratinocyte (NOK) and three OSCC cell lines were cultured in vitro and the expression of galectin-1 protein by each quantified using ELISA. Cell lines were treated with galectin-1 (50, 100 and 150 ng/mL) or OTX008 (12.5, 25, 50 and 100 µg/mL) and cell viability assayed (n = 3). OSCC cell lines with and without 25 µg/mL OTX008 (n = 3) treatment for 48 h, were analysed using qRT2-PCR with a custom array, to assess relative gene expression. RESULTS: All cell lines were found to express galectin-1 protein. Exogenous galectin-1 significantly reduced cell viability in one OSCC cell line over time while the others were only minimally affected. OTX008 treatment reduced cell viability in a dose and time-dependent manner in all cell lines and this was associated with significant regulation of FOS gene expression in the OSCC cell lines. CONCLUSION: OTX008 decreased the viability of OSCC and NOK cells in a dose-dependent manner. The significant regulation of FOS suggests OTX008 causes early induction of the MAPK pathway via the immediate response gene FOS as a subunit of the AP-1 complex.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Calixarenes , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Galectin 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Signaling System , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck , Transcription Factor AP-1
15.
J Oral Sci ; 63(4): 341-346, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34526445

ABSTRACT

PURPOSE: This study aimed to determine expressions of hepatocyte growth factor (HGF) and MET proto-oncogene receptor tyrosine kinase (MET) in palatal periosteum (PP) and to examine the effect of HGF/MET on osteogenic differentiation of human palatal periosteum-derived mesenchymal stem cells (PD-MSCs). METHODS: HGF/MET proteins in human palatal periosteum (n = 3) were localized using immunohistochemistry. PD-MSCs (n = 3) were cultured in serum-free Essential 8 (E8) medium or osteogenic medium with and without Capmatinib, a selective ATP-inhibitor of MET. HGF concentration in vitro was measured with ELISA. Relative gene expression was quantified from PD-MSCs by quantitative reverse transcription real-time polymerase chain reaction. RESULTS: Immunohistochemistry detected co-localization of HGF and MET protein in PP. HGF protein levels were significantly higher (P < 0.05) in osteogenic media (day 21: 12.19 ± 8.36 ng/mL) than in E8 medium (day 21: 0.42 ± 0.72 ng/mL). MET inhibitor had a limited feedback effect on the expression profile of the osteogenic genes tested. Gene expression levels for all but three genes were comparable in serum-free and osteogenic media at all time points. CONCLUSION: HGF/MET present in human PP and HGF is upregulated in vitro during osteogenesis; however the targeted pathways controlled by MET may not involve osteoblast maturation.


Subject(s)
Hepatocyte Growth Factor/metabolism , Mesenchymal Stem Cells , Osteogenesis , Proto-Oncogene Proteins c-met/metabolism , Cell Differentiation , Cells, Cultured , Humans , Periosteum , Proto-Oncogene Mas
16.
Eur J Oral Sci ; 129(6): e12818, 2021 12.
Article in English | MEDLINE | ID: mdl-34289176

ABSTRACT

The aim of the study was to compare the response of calvarial and femoral osteoblasts cultured in a 3D hydrogel environment to cyclic compressive mechanical loading. Human foetal femoral and calvarial osteoblasts were encapsulated in a semi-synthetic thiol-modified hyaluronan gelatin polyethylene glycol diacrylate (PEGDA) cross-linked HyStemC hydrogel. Constructs were subjected to a cyclic compressive strain of 33.4 kPa force every second for 5 s every hour for 6 h per day using FlexCell BioPress culture plates and compared to non-compressed constructs. Cell viability, mineralisation, and morphological changes were observed over 21 days. BMP2, ALP, COL1A1, COL2A1, and OCN gene expression levels were quantified. Encapsulated osteoblast numbers increased and formed hydroxyapatite over a 21-day period. Cell viability decreased under a cyclical strain when compared to cells under no strain. Femoral osteoblasts under strain expressed increased levels of BMP2 (53.9-fold) and COL1A1 (5.1-fold) mRNA compared to no strain constructs. Surprisingly, no BMP2 mRNA was detected in calvarial osteoblasts. Osteoblasts derived from endochondral (femoral) and intra-membranous (calvarial) processes behaved differently in 3D-constructs. We therefore recommend that site-specific osteoblasts be used for future bone engineering and bone replacement materials and further research undertaken to elucidate how site-specific osteoblasts respond to cyclic compressive loads.


Subject(s)
Femur , Osteoblasts , Durapatite , Gene Expression , Humans , Stress, Mechanical
17.
J Proteome Res ; 20(5): 2167-2181, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33769828

ABSTRACT

The ability to activate and regulate stem cells during wound healing and tissue regeneration is a promising field that is resulting in innovative approaches in the field of regenerative medicine. The regenerative capacity of invertebrates has been well documented; however, in mammals, stem cells that drive organ regeneration are rare. Deer antlers are the only known mammalian structure that can annually regenerate to produce a tissue containing dermis, blood vessels, nerves, cartilage, and bone. The neural crest derived stem cells that drive this process result in antlers growing at up to 2 cm/day. Deer antlers thus provide superior attributes compared to lower-order animal models, when investigating the regulation of stem cell-based regeneration. Antler stem cells can therefore be used as a model to investigate the bioactive molecules, biological processes, and pathways involved in the maintenance of a stem cell niche, and their activation and differentiation during organ formation. This review examines stem cell-based regeneration with a focus on deer antlers, a neural crest stem cell-based mammalian regenerative structure. It then discusses the omics technical platforms highlighting the proteomics approaches used for investigating the molecular mechanisms underlying stem cell regulation in antler tissues.


Subject(s)
Antlers , Deer , Animals , Cell Differentiation , Organogenesis , Stem Cells
18.
Planta Med ; 87(3): 253-266, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33434939

ABSTRACT

Manuka oil, an essential oil derived from the Leptospermum scoparium, has been traditionally used for wound care and as a topical antibacterial, antifungal, and anti-inflammatory. However, the essential oil is not well retained at mucosal sites, such as the oral cavity, where the benefits of the aforementioned properties could be utilized toward the treatment of persistent biofilms. Within this study, L. scoparium essential oil was incorporated into a semisolid emulsion for improved delivery. The safety profile of L. scoparium essential oil on human gingival fibroblasts was determined via cell viability, cytotoxicity, and caspase activation. The minimal bactericidal concentration of L. scoparium essential oil was determined, and the emulsion's antibiofilm effects visualized using confocal laser scanning microscopy. L. scoparium essential oil demonstrated a lower IC50 (0.02% at 48 h) when compared to the clinical control chlorhexidine (0.002% at 48 h) and displayed lower cumulative cytotoxicity. Higher concentrations of L. scoparium essential oil (≥ 0.1%) at 6 h resulted in higher caspase 3/7 activation, suggesting an apoptotic pathway of cell death. A minimal bactericidal concentration of 0.1% w/w was observed for 6 oral bacteria and 0.01% w/v for Porphyromonas gingivalis. Textural and rheometric analysis indicated increased stability of emulsion with a 1 : 3 ratio of L. scoparium essential oil: Oryza sativa carrier oil. The optimized 5% w/w L. scoparium essential oil emulsion showed increased bactericidal penetrative effects on Streptococci gordonii biofilms compared to oil alone and to chlorhexidine controls. This study has demonstrated the safety, formulation, and antimicrobial activity of L. scoparium essential oil emulsion for potential antibacterial applications at mucosal sites.


Subject(s)
Leptospermum , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Biofilms , Emulsions , Oils, Volatile/pharmacology
19.
Dent Traumatol ; 37(1): 90-102, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32955751

ABSTRACT

BACKGROUND/AIMS: Dental pulp stem cells from primary teeth cultured in serum-free conditions may have clinical use for the repair and regeneration of teeth as well as other complex tissues and organs. The aim of this study was to test the change in the stem cell markers expression/ stem cell population in human primary pulp cells at the different stages of root resorption. METHODS: Caries-free human primary canines at defined stages of physiological root resorption were included (n = 9). In vitro cultures were established in xeno-free, serum-free Essential 8™ medium with human truncated vitronectin for cell attachment. An embryonic stem cell line (GENEA002) was used as a positive control. The expression of embryonic stem cell markers (Oct4, Nanog and Sox2), neural crest stem cell markers (nestin and Dlx2) and mesenchymal stem cell surface markers (CD90, CD73 and CD105) were investigated by immunocytochemistry. Mesenchymal stem cell markers CD105, CD73 and CD90 and haematopoietic markers: CD45, CD34, CD11b, CD19 and HLA-DR were quantified with flow cytometry. RESULTS: The early neural progenitor markers nestin and Dlx2 were detected in most serum-free cultured dental pulp stem cells, regardless of the tooth resorption stage from which they were harvested. Only isolated cells were found that expressed the embryonic stem cell transcription factors Oct4A, Nanog and Sox2, and in the late stages of resorption, no Oct4A was detected. The majority expressed the mesenchymal stem cell markers CD90, CD73 and CD105. Flow cytometry found positive signals for CD90 > 97.3%, CD73 > 99.6% and CD105 > 82.5%, with no detectable differences between resorption stages. CONCLUSIONS: This study identified populations of dental pulp cells in vitro with markers characteristically associated with embryonic stem cells, neural crest-derived cells and mesenchymal stem cells. Flow cytometry found CD105 expressed at lower levels than CD90 and CD73. The consistency of stem cell marker expression in cells cultured from teeth at different resorption stages suggests that pre-exfoliated primary teeth that are free of caries may provide a convenient source of multipotent stem cells for use in regenerative medicine.


Subject(s)
Dental Pulp , Mesenchymal Stem Cells , Cell Differentiation , Cells, Cultured , Humans , Stem Cells , Tooth, Deciduous
20.
J Cell Physiol ; 236(5): 3752-3769, 2021 05.
Article in English | MEDLINE | ID: mdl-33111346

ABSTRACT

A growing deer antler contains a stem cell niche that can drive endochondral bone regeneration at up to 2 cm/day. Pleiotrophin (PTN), as a multifunctional growth factor, is found highly expressed at the messenger RNA level within the active antler stem cell tissues. This study aims to map the expression patterns of PTN protein and its receptors in a growing antler and investigate the effects of PTN on antler stem cells in vitro. Immunohistochemistry was employed to localise PTN/midkine (MDK) and their functional receptors, protein tyrosine phosphatase receptor type Z (PTPRZ), anaplastic lymphoma kinase (ALK), NOTCH2, and integrin αV ß3, on serial slides of the antler growth centre. PTN was found to be the dominantly expressed growth factor in the PTN/MDK family. High expression of PTPRZ and ALK co-localised with PTN was found suggesting a potential interaction. The high levels of PTN and PTPRZ reflected the antler stem cell activation status during the regenerative process. When antler stem cells were cultured in vitro under the normoxic condition, no PTN protein was detected and exogenous PTN did not induce differentiation or proliferation but rather stem cell maintenance. Collectively, the antler stem cell niche appears to upregulate PTN and PTPRZ in vivo, and PTN-PTPRZ signalling may be involved in regulating antler stem cell behaviour during rapid antler regeneration.


Subject(s)
Antlers/cytology , Carrier Proteins/metabolism , Cytokines/metabolism , Deer/anatomy & histology , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Regeneration , Stem Cells/metabolism , Anaplastic Lymphoma Kinase/metabolism , Animals , Carrier Proteins/genetics , Cell Differentiation/genetics , Cell Hypoxia/genetics , Cell Proliferation/genetics , Cytokines/genetics , Gene Expression Regulation , Midkine/metabolism , Models, Biological , Osteogenesis/genetics , Powders , Regeneration/genetics , Signal Transduction , Stem Cells/cytology , Tissue Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...