Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 84(1-2): 251-62, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24889315

ABSTRACT

Human activities at sea are still increasing. As biodiversity is a central topic in the management of our seas, it is important to understand how diversity responds to different disturbances related with physical impacts. We investigated the effects of three impacts, i.e. sand extraction, dredge disposal and offshore wind energy exploitation, on the soft-bottom macrobenthic assemblages in the Belgian part of the North Sea. We found similar diversity-disturbance responses, mainly related to the fact that different impacts caused similar environmental changes. We observed a sediment refinement which triggered a shift towards a heterogenic, dynamic (transitional) soft-bottom macrobenthic assemblage, with several species typically associated with muddy sands. This led to a local unexpected biodiversity increase in the impacted area. On a wider regional scale, the ever increasing human impacts might lead to a homogenization of the sediment, resulting in a more uniform, yet less diverse benthic ecosystem.


Subject(s)
Biodiversity , Geologic Sediments , Animals , Belgium , Human Activities , Humans , North Sea
2.
Mar Environ Res ; 95: 1-12, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24373388

ABSTRACT

The growing development of offshore wind energy installations across the North Sea is producing new hard anthropogenic structures in the natural soft sediments, causing changes to the surrounding macrobenthos. The extent of modification in permeable sediments around a gravity based wind turbine in the Belgian part of the North Sea was investigated in the period 2011-2012, along four gradients (south-west, north-east, south-east, north-west). Sediment grain size significantly reduced from 427 µm at 200 m to 312 ± 3 µm at 15 m from the foundation along the south-west and north-west gradients. The organic matter content increased from 0.4 ± 0.01% at 100 m to 2.5 ± 0.9% at 15 m from the foundation. The observed changes in environmental characteristics triggered an increase in the macrobenthic density from 1390 ± 129 ind m⁻² at 200 m to 18 583 ± 6713 ind m⁻² at 15 m together with an enhanced diversity from 10 ± 2 at 200 m to 30 ± 5 species per sample at 15 m. Shifts in species dominance were also detected with a greater dominance of the ecosystem-engineer Lanice conchilega (16-25%) close to the foundation. This study suggests a viable prediction of the effects offshore wind farms could create to the naturally occurring macrobenthos on a large-scale.


Subject(s)
Biodiversity , Electric Power Supplies , Environment , Wind , Belgium , Biomass , Environmental Monitoring , Geologic Sediments , North Sea , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL