Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 20(2): e3001285, 2022 02.
Article in English | MEDLINE | ID: mdl-35104285

ABSTRACT

Amid the Coronavirus Disease 2019 (COVID-19) pandemic, preprints in the biomedical sciences are being posted and accessed at unprecedented rates, drawing widespread attention from the general public, press, and policymakers for the first time. This phenomenon has sharpened long-standing questions about the reliability of information shared prior to journal peer review. Does the information shared in preprints typically withstand the scrutiny of peer review, or are conclusions likely to change in the version of record? We assessed preprints from bioRxiv and medRxiv that had been posted and subsequently published in a journal through April 30, 2020, representing the initial phase of the pandemic response. We utilised a combination of automatic and manual annotations to quantify how an article changed between the preprinted and published version. We found that the total number of figure panels and tables changed little between preprint and published articles. Moreover, the conclusions of 7.2% of non-COVID-19-related and 17.2% of COVID-19-related abstracts undergo a discrete change by the time of publication, but the majority of these changes do not qualitatively change the conclusions of the paper.


Subject(s)
COVID-19/prevention & control , Information Dissemination/methods , Peer Review, Research/trends , Periodicals as Topic/trends , Publications/trends , COVID-19/epidemiology , COVID-19/virology , Humans , Pandemics/prevention & control , Peer Review, Research/methods , Peer Review, Research/standards , Periodicals as Topic/standards , Periodicals as Topic/statistics & numerical data , Publications/standards , Publications/statistics & numerical data , Publishing/standards , Publishing/statistics & numerical data , Publishing/trends , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology
2.
PLoS Biol ; 19(4): e3000959, 2021 04.
Article in English | MEDLINE | ID: mdl-33798194

ABSTRACT

The world continues to face a life-threatening viral pandemic. The virus underlying the Coronavirus Disease 2019 (COVID-19), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has caused over 98 million confirmed cases and 2.2 million deaths since January 2020. Although the most recent respiratory viral pandemic swept the globe only a decade ago, the way science operates and responds to current events has experienced a cultural shift in the interim. The scientific community has responded rapidly to the COVID-19 pandemic, releasing over 125,000 COVID-19-related scientific articles within 10 months of the first confirmed case, of which more than 30,000 were hosted by preprint servers. We focused our analysis on bioRxiv and medRxiv, 2 growing preprint servers for biomedical research, investigating the attributes of COVID-19 preprints, their access and usage rates, as well as characteristics of their propagation on online platforms. Our data provide evidence for increased scientific and public engagement with preprints related to COVID-19 (COVID-19 preprints are accessed more, cited more, and shared more on various online platforms than non-COVID-19 preprints), as well as changes in the use of preprints by journalists and policymakers. We also find evidence for changes in preprinting and publishing behaviour: COVID-19 preprints are shorter and reviewed faster. Our results highlight the unprecedented role of preprints and preprint servers in the dissemination of COVID-19 science and the impact of the pandemic on the scientific communication landscape.


Subject(s)
COVID-19 , Information Dissemination/methods , Publishing/trends , SARS-CoV-2 , Biomedical Research/trends , COVID-19/epidemiology , Communication , Humans , Open Access Publishing/trends , Pandemics , Peer Review, Research/trends , Preprints as Topic , SARS-CoV-2/pathogenicity
3.
Elife ; 102021 04 22.
Article in English | MEDLINE | ID: mdl-33885361

ABSTRACT

Vertebrate macrophages are a highly heterogeneous cell population, but while Drosophila blood is dominated by a macrophage-like lineage (plasmatocytes), until very recently these cells were considered to represent a homogeneous population. Here, we present our identification of enhancer elements labelling plasmatocyte subpopulations, which vary in abundance across development. These subpopulations exhibit functional differences compared to the overall population, including more potent injury responses and differential localisation and dynamics in pupae and adults. Our enhancer analysis identified candidate genes regulating plasmatocyte behaviour: pan-plasmatocyte expression of one such gene (Calnexin14D) improves wound responses, causing the overall population to resemble more closely the subpopulation marked by the Calnexin14D-associated enhancer. Finally, we show that exposure to increased levels of apoptotic cell death modulates subpopulation cell numbers. Taken together this demonstrates macrophage heterogeneity in Drosophila, identifies mechanisms involved in subpopulation specification and function and facilitates the use of Drosophila to study macrophage heterogeneity in vivo.


Subject(s)
Apoptosis , Drosophila melanogaster/physiology , Macrophages/physiology , Animals , Apoptosis/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Gene Expression , Larva/growth & development , Larva/physiology , Pupa/growth & development , Pupa/physiology
4.
PLoS Biol ; 17(5): e2006741, 2019 05.
Article in English | MEDLINE | ID: mdl-31086359

ABSTRACT

Macrophages encounter and clear apoptotic cells during normal development and homeostasis, including at numerous sites of pathology. Clearance of apoptotic cells has been intensively studied, but the effects of macrophage-apoptotic cell interactions on macrophage behaviour are poorly understood. Using Drosophila embryos, we have exploited the ease of manipulating cell death and apoptotic cell clearance in this model to identify that the loss of the apoptotic cell clearance receptor Six-microns-under (Simu) leads to perturbation of macrophage migration and inflammatory responses via pathological levels of apoptotic cells. Removal of apoptosis ameliorates these phenotypes, while acute induction of apoptosis phenocopies these defects and reveals that phagocytosis of apoptotic cells is not necessary for their anti-inflammatory action. Furthermore, Simu is necessary for clearance of necrotic debris and retention of macrophages at wounds. Thus, Simu is a general detector of damaged self and represents a novel molecular player regulating macrophages during resolution of inflammation.


Subject(s)
Apoptosis , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Inflammation/pathology , Macrophages/pathology , Membrane Proteins/metabolism , Animals , Cell Movement , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Embryo, Nonmammalian/metabolism , Membrane Proteins/genetics , Mutation/genetics , Necrosis , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...