Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 24(1): 83-95, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19679181

ABSTRACT

Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.


Subject(s)
Analgesics, Opioid/pharmacology , Lymphocyte Antigen 96/drug effects , Toll-Like Receptor 4/drug effects , Analgesia , Animals , Cell Line , Computer Simulation , Hot Temperature , Hyperalgesia/psychology , Infusion Pumps , Injections, Spinal , Lymphocyte Antigen 96/agonists , Lymphocyte Antigen 96/antagonists & inhibitors , Macrophages/drug effects , Male , Mice , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Pain Measurement , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/drug effects , Signal Transduction/drug effects , Substance Withdrawal Syndrome/psychology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/antagonists & inhibitors , Transfection
2.
J Neurosci ; 29(44): 14015-25, 2009 Nov 04.
Article in English | MEDLINE | ID: mdl-19890011

ABSTRACT

Previous studies of peripheral immune cells have documented that activation of adenosine 2A receptors (A(2A)Rs) decrease proinflammatory cytokine release and increase release of the potent anti-inflammatory cytokine, interleukin-10 (IL-10). Given the growing literature supporting that glial proinflammatory cytokines importantly contribute to neuropathic pain and that IL-10 can suppress such pain, we evaluated the effects of intrathecally administered A(2A)R agonists on neuropathic pain using the chronic constriction injury (CCI) model. A single intrathecal injection of the A(2A)R agonists 4-(3-(6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl)prop-2-ynyl)piperidine-1-carboxylic acid methyl ester (ATL313) or 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine HCl (CGS21680), 10-14 d after CCI versus sham surgery, produced a long-duration reversal of mechanical allodynia and thermal hyperalgesia for at least 4 weeks. Neither drug altered the nociceptive responses of sham-operated controls. An A(2A)R antagonist [ZM241385 (4-(2-[7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)triazin-5-ylamino]ethyl)phenol)] coadministered intrathecally with ATL313 abolished the action of ATL313 in rats with neuropathy-induced allodynia but had no effect on allodynia in the absence of the A(2A)R agonist. ATL313 attenuated CCI-induced upregulation of spinal cord activation markers for microglia and astrocytes in the L4-L6 spinal cord segments both 1 and 4 weeks after a single intrathecal ATL313 administration. Neutralizing IL-10 antibodies administered intrathecally transiently abolished the effect of ATL313 on neuropathic pain. In addition, IL-10 mRNA was significantly elevated in the CSF cells collected from the lumbar region. Activation of A(2A)Rs after intrathecal administration may be a novel, therapeutic approach for the treatment of neuropathic pain by increasing IL-10 in the immunocompetent cells of the CNS.


Subject(s)
Adenosine A2 Receptor Agonists , Neuralgia/drug therapy , Piperidines/administration & dosage , Receptor, Adenosine A2A/physiology , Animals , Injections, Spinal , Male , Neuralgia/physiopathology , Pain/drug therapy , Pain/physiopathology , Pain Measurement/drug effects , Pain Measurement/methods , Rats , Rats, Sprague-Dawley
3.
Brain Behav Immun ; 23(2): 240-50, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18938237

ABSTRACT

Morphine-induced glial proinflammatory responses have been documented to contribute to tolerance to opioid analgesia. Here, we examined whether drugs previously shown to suppress glial proinflammatory responses can alter other clinically relevant opioid effects; namely, withdrawal or acute analgesia. AV411 (ibudilast) and minocycline, drugs with distinct mechanisms of action that result in attenuation of glial proinflammatory responses, each reduced naloxone-precipitated withdrawal. Analysis of brain nuclei associated with opioid withdrawal revealed that morphine altered expression of glial activation markers, cytokines, chemokines, and a neurotrophic factor. AV411 attenuated many of these morphine-induced effects. AV411 also protected against spontaneous withdrawal-induced hyperactivity and weight loss recorded across a 12-day timecourse. Notably, in the spontaneous withdrawal study, AV411 treatment was delayed relative to the start of the morphine regimen so to also test whether AV411 could still be effective in the face of established morphine dependence, which it was. AV411 did not simply attenuate all opioid effects, as co-administering AV411 with morphine or oxycodone caused three-to-five-fold increases in acute analgesic potency, as revealed by leftward shifts in the analgesic dose response curves. Timecourse analyses revealed that plasma morphine levels were not altered by AV411, suggestive that potentiated analgesia was not simply due to prolongation of morphine exposure or increased plasma concentrations. These data support and extend similar potentiation of acute opioid analgesia by minocycline, again providing converging lines of evidence of glial involvement. Hence, suppression of glial proinflammatory responses can significantly reduce opioid withdrawal, while improving analgesia.


Subject(s)
Analgesia/psychology , Analgesics, Opioid/adverse effects , Brain/metabolism , Pyridines/pharmacology , Substance Withdrawal Syndrome/physiopathology , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Brain/drug effects , Brain/immunology , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/pharmacology , Dose-Response Relationship, Drug , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , Injections, Intraperitoneal , Male , Minocycline/administration & dosage , Minocycline/pharmacology , Morphine/adverse effects , Naloxone/adverse effects , Opioid-Related Disorders/etiology , Opioid-Related Disorders/metabolism , Opioid-Related Disorders/physiopathology , Opioid-Related Disorders/psychology , Oxycodone/adverse effects , Pain/physiopathology , Pain/psychology , Pain Measurement , Pyridines/administration & dosage , Rats , Rats, Sprague-Dawley , Substance Withdrawal Syndrome/etiology , Substance Withdrawal Syndrome/metabolism , Weight Loss/drug effects
4.
Brain Behav Immun ; 22(8): 1178-89, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18599265

ABSTRACT

Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring < or =5 min after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia.


Subject(s)
Analgesia , Cytokines/metabolism , Morphine/pharmacology , Pain/immunology , Analgesics, Opioid/pharmacology , Animals , Catheters, Indwelling , Chemokine CX3CL1/immunology , Cytokines/cerebrospinal fluid , Hyperalgesia/drug therapy , Injections, Spinal , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1/immunology , Male , Methadone/pharmacology , Pain/drug therapy , Pain/metabolism , Pain Measurement , Pain Threshold/drug effects , RNA, Messenger , Rats , Rats, Sprague-Dawley , Receptors, Tumor Necrosis Factor, Type I/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/immunology , Spinal Cord/metabolism , Time Factors
5.
Eur J Neurosci ; 28(1): 20-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18662331

ABSTRACT

Although activated spinal cord glia contribute importantly to neuropathic pain, how nerve injury activates glia remains controversial. It has recently been proposed, on the basis of genetic approaches, that toll-like receptor 4 (TLR4) may be a key receptor for initiating microglial activation following L5 spinal nerve injury. The present studies extend this idea pharmacologically by showing that TLR4 is key for maintaining neuropathic pain following sciatic nerve chronic constriction injury (CCI). Established neuropathic pain was reversed by intrathecally delivered TLR4 receptor antagonists derived from lipopolysaccharide. Additionally, (+)-naltrexone, (+)-naloxone, and (-)-naloxone, which we show here to be TLR4 antagonists in vitro on both stably transfected HEK293-TLR4 and microglial cell lines, suppressed neuropathic pain with complete reversal upon chronic infusion. Immunohistochemical analyses of spinal cords following chronic infusion revealed suppression of CCI-induced microglial activation by (+)-naloxone and (-)-naloxone, paralleling reversal of neuropathic pain. Together, these CCI data support the conclusion that neuron-to-glia signaling through TLR4 is important not only for initiating neuropathic pain, as suggested previously, but also for maintaining established neuropathic pain. Furthermore, these studies suggest that the novel TLR4 antagonists (+)-naloxone and (-)-naloxone can each fully reverse established neuropathic pain upon multi-day administration. This finding with (+)-naloxone is of potential clinical relevance. This is because (+)-naloxone is an antagonist that is inactive at the (-)-opioid selective receptors on neurons that produce analgesia. Thus, these data suggest that (+)-opioid antagonists such as (+)-naloxone may be useful clinically to suppress glial activation, yet (-)-opioid agonists suppress pain.


Subject(s)
Naloxone/therapeutic use , Naltrexone/therapeutic use , Narcotic Antagonists/therapeutic use , Pain , Toll-Like Receptor 4/metabolism , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Biomarkers/metabolism , Cell Line , Humans , Injections, Spinal , Male , Microglia/metabolism , Naloxone/metabolism , Naloxone/pharmacology , Naltrexone/metabolism , Naltrexone/pharmacology , Narcotic Antagonists/metabolism , Narcotic Antagonists/pharmacology , Pain/chemically induced , Pain/drug therapy , Pain/metabolism , Pain Measurement , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology , Toll-Like Receptor 4/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...