Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Vet Sci ; 9: 946545, 2022.
Article in English | MEDLINE | ID: mdl-36277070

ABSTRACT

Bovine anaplasmosis is a tick-borne bacterial disease with a worldwide distribution and the cause of severe economic losses in the livestock industry in many countries, including México. In the present work, we first review the elements of the immune response of the bovine, which allows ameliorating the clinical signs while eliminating the majority of the blood forms and generating an immunologic memory such that future confrontations with the pathogen will not end in disease. On the other hand, many vaccine candidates have been evaluated for the control of bovine anaplasmosis yet without no commercial worldwide effective vaccine. Lastly, the diversity of the pathogen and how this diversity has impaired the many efforts to control the disease are reviewed.

2.
Front Vet Sci ; 8: 710352, 2021.
Article in English | MEDLINE | ID: mdl-34485437

ABSTRACT

The information from the tick cattle microbiota suggests that the microbial populations may modulate a successful infection process of the tick-borne pathogens. Therefore, there is a need to know the microbial population and their interactions. In this mini-review, we present several examples of how microbiota regulates the survival of pathogens inside the tick and contributes to fitness, adaptation, and tick immunity, among others. The communication between the tick microbiota and the host microbiota is vital to understanding the pathogen transmission process. As part of the tick microbiota, the pathogen interacts with different microbial populations, including the microorganisms of the host microbiota. These interactions comprise a microsystem that regulates the vectorial capacity involved in tick-borne diseases. The knowledge we have about the vectorial capacity contributes to a better understanding of tick-borne pathogens. Additionally, using approaches based on multi-omics strategies applied to studying the microbiota and its microbiome allows the development of strategies to control ticks. The results derived from those studies reveal the dynamics of the microbiota and potential targets for anti-tick vaccine development. In this context, the anti-microbiota vaccines have emerged as an alternative with a good prognosis. Some strategies developed to control other arthropods vectors, such as paratransgenesis, could control ticks and tick-borne diseases.

3.
Microbiol Resour Announc ; 8(45)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31699769

ABSTRACT

Anaplasma marginale is an intraerythrocytic bacterium that causes bovine anaplasmosis and is endemic in Mexico. In this work, we report two draft genome sequences of Mexican isolates from different geographical regions and with different degrees of virulence.

4.
Article in English | MEDLINE | ID: mdl-30533750

ABSTRACT

Bovine anaplasmosis is an arthropod-borne hemolytic disease caused by Anaplasma marginale. While only a few Anaplasma marginale strains have been reported, no Mexican strains have been reported. Due to the genetic diversity of A. marginale, the genome of the strain Mex-01-001-01, isolated in Mexico, represents a new source of information.

5.
Cytokine ; 112: 63-74, 2018 12.
Article in English | MEDLINE | ID: mdl-30072088

ABSTRACT

Rickettsioses are zoonotic infections caused by obligate intracellular bacteria of the genera Rickettsia that affect human health; sometimes humans being considered as accidental hosts. At a molecular level, the rickettsiae infection triggers molecular signaling leading to the secretion of proinflammatory cytokines. These cytokines direct the immune response to the host cell damage and pathogen removal. In this review, we present metabolic aspects of the host cell in the presence of rickettsiae and how this presence triggers an inflammatory response to cope with the pathogen. We also reviewed the secretion of cytokines that modulates host cell response at immune and metabolic levels.


Subject(s)
Rickettsia Infections/metabolism , Rickettsia/pathogenicity , Animals , Cytokines/metabolism , Host-Pathogen Interactions/physiology , Humans , Inflammation/metabolism , Inflammation/microbiology
6.
BMC Vet Res ; 11: 278, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26552648

ABSTRACT

BACKGROUND: Avian coccidiosis is a disease caused worldwide by several species of parasite Eimeria that causes significant economic losses. This disease affects chickens development and production, that most of times is controlled with anticoccidial drugs. Although efforts have been made to address this disease, they have been made to control Eimeria sporozoites, although enteric stages are often vulnerable, however; the parasite oocyst remains a problem that must be controlled, as it has a resistant structure that facilitates dispersion. Despite some commercial products based on chemical compounds have been developed as disinfectants that destroy oocysts, the solution of the problem remains to be solved. RESULTS: In this work, we assessed in vitro anticoccidial activity of a compound(s) secreted by yeast isolated in oocysts suspension from infected chickens. The yeast was molecularly identified as Meyerozyma guilliermondii, and its anticoccidial activity against Eimeria tenella oocysts was assessed. Here, we report the damage to oocysts walls caused by M. guilliermondii culture, supernatant, supernatant extract and intracellular proteins. In all cases, a significant decreased of oocysts was observed. CONCLUSIONS: The yeast Meyerozyma guilliermondii secretes a compound with anticoccidial activity and also has a compound of protein nature that damages the resistant structure of oocyst, showing the potential of this yeast and its products as a feasible method of coccidiosis control.


Subject(s)
Coccidiosis/veterinary , Coccidiostats/chemistry , Coccidiostats/pharmacology , Eimeria/drug effects , Yeasts/classification , Yeasts/metabolism , Animals , Chickens , Coccidiosis/prevention & control , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Oocysts/drug effects , Phylogeny , Polymerase Chain Reaction , RNA, Fungal/genetics , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...