Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Appl Lab Med ; 7(4): 827-833, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35296885

ABSTRACT

BACKGROUND: Serological assays for SARS-CoV-2 are important tools for diagnosis in patients with negative RT-PCR testing, pediatric patients with multisystem inflammatory syndrome, and serosurveillance studies. However, lateral flow-based serological assays have previously demonstrated poor analytical and clinical performance, limiting their utility. METHODS: We assessed the ADEXUSDx COVID-19 lateral flow assay for agreement with diagnostic RT-PCR testing using 120 specimens from RT-PCR-positive patients, 77 specimens from symptomatic RT-PCR-negative patients, and 47 specimens obtained prepandemic. Specimens collected <14 days from symptom onset in RT-PCR-positive patients were compared relative to the Abbott SARS-CoV-2 IgG assay. RESULTS: The ADEXUSDx COVID-19 Test yielded an overall positive percent agreement (PPA) of 92.5% (95%CI 85.8 to 96.3) and negative percent agreement of 99.2% (95% CI 94.9-100.0) relative to RT-PCR and in prepandemic specimens. Relative to days from symptom onset, the PPA after 13 days was 100% (95% CI 94.2-100); from 7 to 13 days, 89.7 (95% CI 71.5-97.2); and from 0 to 7 days, 53.8 (95% CI 26.1-79.6). The overall agreement between the Abbott and ADEXUSDx assays was 80.9%. Twenty-five specimens were positive by both assays, 9 specimens were negative by both assays, and 8 specimens were positive by only the ADEXUSDx assay. CONCLUSIONS: We demonstrate high PPA and negative percent agreement of the ADEXUSDx COVID-19 assay and diagnostic testing by RT-PCR, with PPA approximately 90% by 7 days following symptom onset. The use of waived testing for antibodies to SARS-CoV-2 with high sensitivity and specificity provide a further tool for combatting the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/complications , COVID-19/diagnosis , Child , Humans , Pandemics , SARS-CoV-2/genetics , Sensitivity and Specificity , Systemic Inflammatory Response Syndrome
2.
Clin Immunol ; 235: 108791, 2022 02.
Article in English | MEDLINE | ID: mdl-34214649

ABSTRACT

Coronavirus Disease 2019 (COVID-19) emerged as a global pandemic resulting in significant mortality and morbidity. COVID-19 vaccines have been shown to be highly effective in preventing COVID-19 infections and significantly reducing disease severity and mortality. We report on a novel COVID-19 antibody assay using a unique platform to rapidly detect SARS-CoV-2 antibodies with a drop of fingerstick blood in a subject following COVID-19 vaccination. We show early detection of SARS-CoV-2 antibodies post vaccination and persistence of detectable antibodies for at least 6 months. Rapid point of care COVID-19 antibody tests might have a role in assessing the appearance and durability of immune response following COVID-19 vaccination.


Subject(s)
Antibodies, Viral/immunology , BNT162 Vaccine/immunology , Blood Specimen Collection/methods , COVID-19/immunology , Immunoglobulins/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , BNT162 Vaccine/administration & dosage , COVID-19/epidemiology , COVID-19/virology , COVID-19 Serological Testing/methods , Fingers , Humans , Immunoglobulins/blood , Male , Middle Aged , Pandemics/prevention & control , Reproducibility of Results , SARS-CoV-2/physiology , Vaccination
3.
BMC Med ; 17(1): 135, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31311600

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver illness with a genetically heterogeneous background that can be accompanied by considerable morbidity and attendant health care costs. The pathogenesis and progression of NAFLD is complex with many unanswered questions. We conducted genome-wide association studies (GWASs) using both adult and pediatric participants from the Electronic Medical Records and Genomics (eMERGE) Network to identify novel genetic contributors to this condition. METHODS: First, a natural language processing (NLP) algorithm was developed, tested, and deployed at each site to identify 1106 NAFLD cases and 8571 controls and histological data from liver tissue in 235 available participants. These include 1242 pediatric participants (396 cases, 846 controls). The algorithm included billing codes, text queries, laboratory values, and medication records. Next, GWASs were performed on NAFLD cases and controls and case-only analyses using histologic scores and liver function tests adjusting for age, sex, site, ancestry, PC, and body mass index (BMI). RESULTS: Consistent with previous results, a robust association was detected for the PNPLA3 gene cluster in participants with European ancestry. At the PNPLA3-SAMM50 region, three SNPs, rs738409, rs738408, and rs3747207, showed strongest association (best SNP rs738409 p = 1.70 × 10- 20). This effect was consistent in both pediatric (p = 9.92 × 10- 6) and adult (p = 9.73 × 10- 15) cohorts. Additionally, this variant was also associated with disease severity and NAFLD Activity Score (NAS) (p = 3.94 × 10- 8, beta = 0.85). PheWAS analysis link this locus to a spectrum of liver diseases beyond NAFLD with a novel negative correlation with gout (p = 1.09 × 10- 4). We also identified novel loci for NAFLD disease severity, including one novel locus for NAS score near IL17RA (rs5748926, p = 3.80 × 10- 8), and another near ZFP90-CDH1 for fibrosis (rs698718, p = 2.74 × 10- 11). Post-GWAS and gene-based analyses identified more than 300 genes that were used for functional and pathway enrichment analyses. CONCLUSIONS: In summary, this study demonstrates clear confirmation of a previously described NAFLD risk locus and several novel associations. Further collaborative studies including an ethnically diverse population with well-characterized liver histologic features of NAFLD are needed to further validate the novel findings.


Subject(s)
Non-alcoholic Fatty Liver Disease/genetics , Adult , Aged , Body Mass Index , Case-Control Studies , Community Networks/organization & administration , Community Networks/statistics & numerical data , Disease Progression , Electronic Health Records/organization & administration , Electronic Health Records/statistics & numerical data , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomics/organization & administration , Genomics/statistics & numerical data , Humans , Lipase/genetics , Male , Membrane Proteins/genetics , Middle Aged , Morbidity , Non-alcoholic Fatty Liver Disease/epidemiology , Phenotype , Polymorphism, Single Nucleotide , Signal Transduction/genetics
4.
J Pers Med ; 8(1)2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29301385

ABSTRACT

We examined the Institutional Review Board (IRB) process at 9 academic institutions in the electronic Medical Records and Genomics (eMERGE) Network, for proposed electronic health record-based genomic medicine studies, to identify common questions and concerns. Sequencing of 109 disease related genes and genotyping of 14 actionable variants is being performed in ~28,100 participants from the 9 sites. Pathogenic/likely pathogenic variants in actionable genes are being returned to study participants. We examined each site's research protocols, informed-consent materials, and interactions with IRB staff. Research staff at each site completed questionnaires regarding their IRB interactions. The time to prepare protocols for IRB submission, number of revisions and time to approval ranged from 10-261 days, 0-11, and 11-90 days, respectively. IRB recommendations related to the readability of informed consent materials, specifying the full range of potential risks, providing options for receiving limited results or withdrawal, sharing of information with family members, and establishing the mechanisms to answer participant questions. IRBs reviewing studies that involve the return of results from genomic sequencing have a diverse array of concerns, and anticipating these concerns can help investigators to more effectively engage IRBs.

5.
Appl Clin Inform ; 7(3): 693-706, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27452794

ABSTRACT

OBJECTIVE: The objective of this study is to develop an algorithm to accurately identify children with severe early onset childhood obesity (ages 1-5.99 years) using structured and unstructured data from the electronic health record (EHR). INTRODUCTION: Childhood obesity increases risk factors for cardiovascular morbidity and vascular disease. Accurate definition of a high precision phenotype through a standardize tool is critical to the success of large-scale genomic studies and validating rare monogenic variants causing severe early onset obesity. DATA AND METHODS: Rule based and machine learning based algorithms were developed using structured and unstructured data from two EHR databases from Boston Children's Hospital (BCH) and Cincinnati Children's Hospital and Medical Center (CCHMC). Exclusion criteria including medications or comorbid diagnoses were defined. Machine learning algorithms were developed using cross-site training and testing in addition to experimenting with natural language processing features. RESULTS: Precision was emphasized for a high fidelity cohort. The rule-based algorithm performed the best overall, 0.895 (CCHMC) and 0.770 (BCH). The best feature set for machine learning employed Unified Medical Language System (UMLS) concept unique identifiers (CUIs), ICD-9 codes, and RxNorm codes. CONCLUSIONS: Detecting severe early childhood obesity is essential for the intervention potential in children at the highest long-term risk of developing comorbidities related to obesity and excluding patients with underlying pathological and non-syndromic causes of obesity assists in developing a high-precision cohort for genetic study. Further such phenotyping efforts inform future practical application in health care environments utilizing clinical decision support.


Subject(s)
Machine Learning , Pediatric Obesity/diagnosis , Tertiary Healthcare , Child , Child, Preschool , Comorbidity , Early Diagnosis , Female , Humans , Infant , Male , Pediatric Obesity/epidemiology
6.
PLoS One ; 11(7): e0159621, 2016.
Article in English | MEDLINE | ID: mdl-27472449

ABSTRACT

OBJECTIVE: Cohort selection is challenging for large-scale electronic health record (EHR) analyses, as International Classification of Diseases 9th edition (ICD-9) diagnostic codes are notoriously unreliable disease predictors. Our objective was to develop, evaluate, and validate an automated algorithm for determining an Autism Spectrum Disorder (ASD) patient cohort from EHR. We demonstrate its utility via the largest investigation to date of the co-occurrence patterns of medical comorbidities in ASD. METHODS: We extracted ICD-9 codes and concepts derived from the clinical notes. A gold standard patient set was labeled by clinicians at Boston Children's Hospital (BCH) (N = 150) and Cincinnati Children's Hospital and Medical Center (CCHMC) (N = 152). Two algorithms were created: (1) rule-based implementing the ASD criteria from Diagnostic and Statistical Manual of Mental Diseases 4th edition, (2) predictive classifier. The positive predictive values (PPV) achieved by these algorithms were compared to an ICD-9 code baseline. We clustered the patients based on grouped ICD-9 codes and evaluated subgroups. RESULTS: The rule-based algorithm produced the best PPV: (a) BCH: 0.885 vs. 0.273 (baseline); (b) CCHMC: 0.840 vs. 0.645 (baseline); (c) combined: 0.864 vs. 0.460 (baseline). A validation at Children's Hospital of Philadelphia yielded 0.848 (PPV). Clustering analyses of comorbidities on the three-site large cohort (N = 20,658 ASD patients) identified psychiatric, developmental, and seizure disorder clusters. CONCLUSIONS: In a large cross-institutional cohort, co-occurrence patterns of comorbidities in ASDs provide further hypothetical evidence for distinct courses in ASD. The proposed automated algorithms for cohort selection open avenues for other large-scale EHR studies and individualized treatment of ASD.


Subject(s)
Algorithms , Autism Spectrum Disorder/diagnosis , Electronic Health Records , Child , Child, Preschool , Cohort Studies , Female , Humans , Male
7.
J Pathol Inform ; 6: 50, 2015.
Article in English | MEDLINE | ID: mdl-26605115

ABSTRACT

BACKGROUND: Genomic medicine has the potential to improve care by tailoring treatments to the individual. There is consensus in the literature that pharmacogenomics (PGx) may be an ideal starting point for real-world implementation, due to the presence of well-characterized drug-gene interactions. Clinical Decision Support (CDS) is an ideal avenue by which to implement PGx at the bedside. Previous literature has established theoretical models for PGx CDS implementation and discussed a number of anticipated real-world challenges. However, work detailing actual PGx CDS implementation experiences has been limited. Anticipated challenges include data storage and management, system integration, physician acceptance, and more. METHODS: In this study, we analyzed the experiences of ten members of the Electronic Medical Records and Genomics (eMERGE) Network, and one affiliate, in their attempts to implement PGx CDS. We examined the resulting PGx CDS system characteristics and conducted a survey to understand the unanticipated implementation challenges sites encountered. RESULTS: Ten sites have successfully implemented at least one PGx CDS rule in the clinical setting. The majority of sites elected to create an Omic Ancillary System (OAS) to manage genetic and genomic data. All sites were able to adapt their existing CDS tools for PGx knowledge. The most common and impactful delays were not PGx-specific issues. Instead, they were general IT implementation problems, with top challenges including team coordination/communication and staffing. The challenges encountered caused a median total delay in system go-live of approximately two months. CONCLUSIONS: These results suggest that barriers to PGx CDS implementations are generally surmountable. Moreover, PGx CDS implementation may not be any more difficult than other healthcare IT projects of similar scope, as the most significant delays encountered were not unique to genomic medicine. These are encouraging results for any institution considering implementing a PGx CDS tool, and for the advancement of genomic medicine.

8.
PLoS One ; 10(9): e0138677, 2015.
Article in English | MEDLINE | ID: mdl-26413716

ABSTRACT

INTRODUCTION: Liver enzyme levels and total serum bilirubin are under genetic control and in recent years genome-wide population-based association studies have identified different susceptibility loci for these traits. We conducted a genome-wide association study in European ancestry participants from the Electronic Medical Records and Genomics (eMERGE) Network dataset of patient medical records with available genotyping data in order to identify genetic contributors to variability in serum bilirubin levels and other liver function tests and to compare the effects between adult and pediatric populations. METHODS: The process of whole genome imputation of eMERGE samples with standard quality control measures have been described previously. After removing missing data and outliers based on principal components (PC) analyses, 3294 samples from European ancestry were used for the GWAS study. The association between each single nucleotide polymorphism (SNP) and total serum bilirubin and other liver function tests was tested using linear regression, adjusting for age, gender, site, platform and ancestry principal components (PC). RESULTS: Consistent with previous results, a strong association signal has been detected for UGT1A gene cluster (best SNP rs887829, beta = 0.15, p = 1.30x10-118) for total serum bilirubin level. Indeed, in this region more than 176 SNPs (or indels) had p<10-8 spanning 150Kb on the long arm of chromosome 2q37.1. In addition, we found a similar level of magnitude in a pediatric group (p = 8.26x10-47, beta = 0.17). Further imputation using sequencing data as a reference panel revealed association of other markers including known TA7 repeat indels (rs8175347) (p = 9.78x10-117) and rs111741722 (p = 5.41x10-119) which were in proxy (r2 = 0.99) with rs887829. Among rare variants, two Asian subjects homozygous for coding SNP rs4148323 (G71R) were identified. Additional known effects for total serum bilirubin were also confirmed including organic anion transporters SLCO1B1-SLCO1B3, TDRP and ZMYND8 at FDR<0.05 with no gene-gene interaction effects. Phenome-wide association studies (PheWAS) suggest a protective effect of TA7 repeat against cerebrovascular disease in an adult cohort (OR = 0.75, p = 0.0008). Among other liver function tests, we also confirmed the previous effect of the ABO blood group locus for variation in serum alkaline phosphatase (rs579459, p = 9.44x10-15). CONCLUSIONS: Taken together, our data present interesting findings with strong confirmation of previous effects by simply using the eMERGE electronic health record phenotyping. In addition, our findings indicate that similar to the adult population, the UGT1A1 is the main locus responsible for normal variation of serum bilirubin in pediatric populations.


Subject(s)
Electronic Health Records , Gene Regulatory Networks , Genome-Wide Association Study , Genomics , Liver Function Tests , Adult , Alkaline Phosphatase/blood , Bilirubin/blood , Case-Control Studies , Child , Cohort Studies , Demography , Female , Glucuronosyltransferase/genetics , Humans , Linkage Disequilibrium/genetics , Male , Polymorphism, Single Nucleotide/genetics , White People/genetics
9.
Proteomics Clin Appl ; 9(11-12): 1012-20, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25824007

ABSTRACT

PURPOSE: Patients with systemic lupus erythematosus (SLE) frequently develop lupus nephritis (LN), a complication frequently leading to end stage kidney disease. Immune complex deposition in the glomerulus is central to the development of LN. Using a targeted proteomic approach, we tested the hypothesis that autoantibodies targeting glomerular antigens contribute to the development of LN. EXPERIMENTAL DESIGN: Human podocyte and glomerular proteins were separated by SDS-PAGE and immunoblotted with sera from SLE patients with and without LN. The regions of those gels corresponding to reactive bands observed with sera from LN patients were analyzed using LC-MS/MS. RESULTS: LN reactive bands were seen at approximately 50 kDa in podocyte extracts and between 36 and 50 kDa in glomerular extracts. Those bands were analyzed by LC-MS/MS and 102 overlapping proteins were identified. Bioinformatic analysis determined that 36 of those proteins were membrane associated, including a protein previously suggested to contribute to glomerulonephritis and LN, annexin A2. By ELISA, patients with proliferative LN demonstrated significantly increased antibodies against annexin A2. CONCLUSION AND CLINICAL RELEVANCE: Proteomic approaches identified multiple candidate antigens for autoantibodies in patients with LN. Serum antibodies against annexin A2 were significantly elevated in subjects with proliferative LN, validating those antibodies as potential biomarkers.


Subject(s)
Annexin A2/immunology , Autoantibodies/blood , Autoantibodies/immunology , Kidney Glomerulus/metabolism , Lupus Nephritis/immunology , Humans , Lupus Nephritis/metabolism , Lupus Nephritis/pathology
10.
Front Genet ; 5: 401, 2014.
Article in English | MEDLINE | ID: mdl-25477900

ABSTRACT

OBJECTIVE: We report the first pediatric specific Phenome-Wide Association Study (PheWAS) using electronic medical records (EMRs). Given the early success of PheWAS in adult populations, we investigated the feasibility of this approach in pediatric cohorts in which associations between a previously known genetic variant and a wide range of clinical or physiological traits were evaluated. Although computationally intensive, this approach has potential to reveal disease mechanistic relationships between a variant and a network of phenotypes. METHOD: Data on 5049 samples of European ancestry were obtained from the EMRs of two large academic centers in five different genotyped cohorts. Recently, these samples have undergone whole genome imputation. After standard quality controls, removing missing data and outliers based on principal components analyses (PCA), 4268 samples were used for the PheWAS study. We scanned for associations between 2476 single-nucleotide polymorphisms (SNP) with available genotyping data from previously published GWAS studies and 539 EMR-derived phenotypes. The false discovery rate was calculated and, for any new PheWAS findings, a permutation approach (with up to 1,000,000 trials) was implemented. RESULTS: This PheWAS found a variety of common variants (MAF > 10%) with prior GWAS associations in our pediatric cohorts including Juvenile Rheumatoid Arthritis (JRA), Asthma, Autism and Pervasive Developmental Disorder (PDD) and Type 1 Diabetes with a false discovery rate < 0.05 and power of study above 80%. In addition, several new PheWAS findings were identified including a cluster of association near the NDFIP1 gene for mental retardation (best SNP rs10057309, p = 4.33 × 10(-7), OR = 1.70, 95%CI = 1.38 - 2.09); association near PLCL1 gene for developmental delays and speech disorder [best SNP rs1595825, p = 1.13 × 10(-8), OR = 0.65(0.57 - 0.76)]; a cluster of associations in the IL5-IL13 region with Eosinophilic Esophagitis (EoE) [best at rs12653750, p = 3.03 × 10(-9), OR = 1.73 95%CI = (1.44 - 2.07)], previously implicated in asthma, allergy, and eosinophilia; and association of variants in GCKR and JAZF1 with allergic rhinitis in our pediatric cohorts [best SNP rs780093, p = 2.18 × 10(-5), OR = 1.39, 95%CI = (1.19 - 1.61)], previously demonstrated in metabolic disease and diabetes in adults. CONCLUSION: The PheWAS approach with re-mapping ICD-9 structured codes for our European-origin pediatric cohorts, as with the previous adult studies, finds many previously reported associations as well as presents the discovery of associations with potentially important clinical implications.

11.
PLoS One ; 9(12): e115614, 2014.
Article in English | MEDLINE | ID: mdl-25545785

ABSTRACT

UNLABELLED: To explore the potential influence of the polymorphic 8p23.1 inversion on known autoimmune susceptibility risk at or near BLK locus, we validated a new bioinformatics method that utilizes SNP data to enable accurate, high-throughput genotyping of the 8p23.1 inversion in a Caucasian population. METHODS: Principal components analysis (PCA) was performed using markers inside the inversion territory followed by k-means cluster analyses on 7416 European derived and 267 HapMaP CEU and TSI samples. A logistic regression conditional analysis was performed. RESULTS: Three subgroups have been identified; inversion homozygous, heterozygous and non-inversion homozygous. The status of inversion was further validated using HapMap samples that had previously undergone Fluorescence in situ hybridization (FISH) assays with a concordance rate of above 98%. Conditional analyses based on the status of inversion were performed. We found that overall association signals in the BLK region remain significant after controlling for inversion status. The proportion of lupus cases and controls (cases/controls) in each subgroup was determined to be 0.97 for the inverted homozygous group (1067 cases and 1095 controls), 1.12 for the inverted heterozygous group (1935 cases 1717 controls) and 1.36 for non-inverted subgroups (924 cases and 678 controls). After calculating the linkage disequilibrium between inversion status and lupus risk haplotype we found that the lupus risk haplotype tends to reside on non-inversion background. As a result, a new association effect between non-inversion status and lupus phenotype has been identified ((p = 8.18×10(-7), OR = 1.18, 95%CI = 1.10-1.26). CONCLUSION: Our results demonstrate that both known lupus risk haplotype and inversion status act additively in the pathogenesis of lupus. Since inversion regulates expression of many genes in its territory, altered expression of other genes might also be involved in the development of lupus.


Subject(s)
Chromosomes, Human, Pair 8/genetics , Lupus Erythematosus, Systemic/genetics , Sequence Inversion , src-Family Kinases/genetics , Case-Control Studies , Female , Genetic Loci , Haplotypes , Homozygote , Humans , Male , Polymorphism, Single Nucleotide , United States , White People
12.
Am J Hum Genet ; 94(4): 586-98, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24702955

ABSTRACT

Efforts to identify lupus-associated causal variants in the FAM167A/BLK locus on 8p21 are hampered by highly associated noncausal variants. In this report, we used a trans-population mapping and sequencing strategy to identify a common variant (rs922483) in the proximal BLK promoter and a tri-allelic variant (rs1382568) in the upstream alternative BLK promoter as putative causal variants for association with systemic lupus erythematosus. The risk allele (T) at rs922483 reduced proximal promoter activity and modulated alternative promoter usage. Allelic differences at rs1382568 resulted in altered promoter activity in B progenitor cell lines. Thus, our results demonstrated that both lupus-associated functional variants contribute to the autoimmune disease association by modulating transcription of BLK in B cells and thus potentially altering immune responses.


Subject(s)
Lupus Erythematosus, Systemic/genetics , Promoter Regions, Genetic , Transcription, Genetic , src-Family Kinases/genetics , Alleles , Chromosomes, Human, Pair 8 , Electrophoretic Mobility Shift Assay , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Polymorphism, Single Nucleotide
13.
Front Genet ; 4: 268, 2013.
Article in English | MEDLINE | ID: mdl-24348519

ABSTRACT

UNLABELLED: Common variations at the loci harboring the fat mass and obesity gene (FTO), MC4R, and TMEM18 are consistently reported as being associated with obesity and body mass index (BMI) especially in adult population. In order to confirm this effect in pediatric population five European ancestry cohorts from pediatric eMERGE-II network (CCHMC-BCH) were evaluated. METHOD: Data on 5049 samples of European ancestry were obtained from the Electronic Medical Records (EMRs) of two large academic centers in five different genotyped cohorts. For all available samples, gender, age, height, and weight were collected and BMI was calculated. To account for age and sex differences in BMI, BMI z-scores were generated using 2000 Centers of Disease Control and Prevention (CDC) growth charts. A Genome-wide association study (GWAS) was performed with BMI z-score. After removing missing data and outliers based on principal components (PC) analyses, 2860 samples were used for the GWAS study. The association between each single nucleotide polymorphism (SNP) and BMI was tested using linear regression adjusting for age, gender, and PC by cohort. The effects of SNPs were modeled assuming additive, recessive, and dominant effects of the minor allele. Meta-analysis was conducted using a weighted z-score approach. RESULTS: The mean age of subjects was 9.8 years (range 2-19). The proportion of male subjects was 56%. In these cohorts, 14% of samples had a BMI ≥95 and 28 ≥ 85%. Meta analyses produced a signal at 16q12 genomic region with the best result of p = 1.43 × 10(-) (7) [p (rec) = 7.34 × 10(-) (8)) for the SNP rs8050136 at the first intron of FTO gene (z = 5.26) and with no heterogeneity between cohorts (p = 0.77). Under a recessive model, another published SNP at this locus, rs1421085, generates the best result [z = 5.782, p (rec) = 8.21 × 10(-) (9)]. Imputation in this region using dense 1000-Genome and Hapmap CEU samples revealed 71 SNPs with p < 10(-) (6), all at the first intron of FTO locus. When hetero-geneity was permitted between cohorts, signals were also obtained in other previously identified loci, including MC4R (rs12964056, p = 6.87 × 10(-) (7), z = -4.98), cholecystokinin CCK (rs8192472, p = 1.33 × 10(-) (6), z = -4.85), Interleukin 15 (rs2099884, p = 1.27 × 10(-) (5), z = 4.34), low density lipoprotein receptor-related protein 1B [LRP1B (rs7583748, p = 0.00013, z = -3.81)] and near transmembrane protein 18 (TMEM18) (rs7561317, p = 0.001, z = -3.17). We also detected a novel locus at chromosome 3 at COL6A5 [best SNP = rs1542829, minor allele frequency (MAF) of 5% p = 4.35 × 10(-) (9), z = 5.89]. CONCLUSION: An EMR linked cohort study demonstrates that the BMI-Z measurements can be successfully extracted and linked to genomic data with meaningful confirmatory results. We verified the high prevalence of childhood rate of overweight and obesity in our cohort (28%). In addition, our data indicate that genetic variants in the first intron of FTO, a known adult genetic risk factor for BMI, are also robustly associated with BMI in pediatric population.

14.
Autoimmun Rev ; 11(4): 276-80, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21840425

ABSTRACT

Many autoimmune diseases (ADs) share similar underlying pathology and have a tendency to cluster within families, supporting the involvement of shared susceptibility genes. To date, most of the genetic variants associated with systemic lupus erythematosus (SLE) susceptibility also show association with others ADs. ITGAM and its associated 'predisposing' variant (rs1143679, Arg77His), predicted to alter the tertiary structures of the ligand-binding domain of ITGAM, may play a key role for SLE pathogenesis. The aim of this study is to examine whether the ITGAM variant is also associated with other ADs. We evaluated case-control association between rs1143679 and ADs (N=18,457) including primary Sjögren's syndrome, systemic sclerosis, multiple sclerosis, rheumatoid arthritis, juvenile idiopathic arthritis, celiac disease, and type-1 diabetes. We also performed meta-analyses using our data in addition to available published data. Although the risk allele 'A' is relatively more frequent among cases for each disease, it was not significantly associated with any other ADs tested in this study. However, the meta-analysis for systemic sclerosis was associated with rs1143679 (p(meta)=0.008). In summary, this study explored the role of ITGAM in general autoimmunity in seven non-lupus ADs, and only found association for systemic sclerosis when our results were combined with published results. Thus ITGAM may not be a general autoimmunity gene but this variant may be specifically associated with SLE and systemic sclerosis.


Subject(s)
Autoimmune Diseases/genetics , CD11b Antigen/genetics , Genetic Predisposition to Disease , Autoimmune Diseases/epidemiology , DNA Mutational Analysis , Europe , Gene Frequency , Genetic Association Studies , Genotype , Humans , Latin America , Polymorphism, Single Nucleotide
15.
Muscle Nerve ; 44(4): 531-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21826682

ABSTRACT

INTRODUCTION: Of the nearly 38 million people in the USA who receive statin therapy, 0.1-0.5% experience severe or life-threatening myopathic side effects. METHODS: We performed a genome-wide association study (GWAS) in a group of patients with severe statin myopathy versus a statin-tolerant group to identify genetic susceptibility loci. RESULTS: Replication studies in independent groups of severe statin myopathy (n = 190) and statin-tolerant controls (n = 130) resulted in the identification of three single-nucleotide polymorphisms (SNPs), rs9342288, rs1337512, and rs3857532, in the eyes shut homolog (EYS) on chromosome 6 suggestive of an association with risk for severe statin myopathy (P = 0.0003-0.0008). Analysis of EYS cDNA demonstrated that EYS gene products are complex and expressed with relative abundance in the spinal cord as well as in the retina. CONCLUSION: Structural similarities of these EYS gene products to members of the Notch signaling pathway and to agrin suggest a possible functional role in the maintenance and regeneration of the structural integrity of skeletal muscle.


Subject(s)
Eye Proteins/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Muscular Diseases/chemically induced , Muscular Diseases/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Aged , Aged, 80 and over , Chromosomes, Human, Pair 6/genetics , Computational Biology , Exons/genetics , Female , Gene Frequency , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Muscle, Skeletal/pathology , Muscular Diseases/pathology , Young Adult
16.
Mol Genet Metab ; 104(1-2): 167-73, 2011.
Article in English | MEDLINE | ID: mdl-21795085

ABSTRACT

Malignant hyperthermia (MH) is a pharmacogenetic, autosomal dominantly inherited disorder of skeletal muscle triggered by volatile anesthetics and infrequently by extreme exertion and heat exposure. MH has variable penetrance with an incidence ranging from 1 in 5000 to 1 in 50,000-100,000 anesthesias. Mutations in the ryanodine receptor gene, RYR1, are found in 50-70% of cases. We hypothesized that a portion of patients with drug-induced muscle diseases, unrelated to anesthesia, such as severe statin myopathy, have underlying genetic liability that may include RYR1 gene mutations. DNA samples were collected from 885 patients in 4 groups: severe statin myopathy (n=197), mild statin myopathy (n=163), statin-tolerant controls (n=133), and non-drug-induced myopathies of unknown etiology characterized by exercise-induced muscle pain and weakness (n=392). Samples were screened for 105 mutations and variants in 26 genes associated with 7 categories of muscle disease including 34 mutations and variants in the RYR1 gene. Disease-causing mutations or variants in RYR1 were present in 3 severe statin myopathy cases, 1 mild statin myopathy case, 8 patients with non-drug-induced myopathy, and none in controls. These results suggest that disease-causing mutations and certain variants in the RYR1 gene may contribute to underlying genetic risk for non-anesthesia-induced myopathies and should be included in genetic susceptibility screening in patients with severe statin myopathy and in patients with non-statin-induced myopathies of unknown etiology.


Subject(s)
Anesthesia , Genetic Predisposition to Disease , Malignant Hyperthermia/complications , Malignant Hyperthermia/genetics , Muscular Diseases/complications , Muscular Diseases/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Male , Middle Aged , Mutation/genetics , Oligonucleotide Array Sequence Analysis , Risk Factors , Ryanodine Receptor Calcium Release Channel/genetics
18.
Arthritis Res Ther ; 11(3): R66, 2009.
Article in English | MEDLINE | ID: mdl-19442274

ABSTRACT

INTRODUCTION: Behçet's disease is a chronic systemic inflammatory disease that remains incompletely understood. Herein, we perform the first genome-wide association study in Behçet's disease. METHODS: Using DNA pooling technology and the Affymetrix 500K arrays, we identified possible candidate gene associations with Behçet's disease in a cohort of 152 Behçet's disease patients and 172 healthy ethnically matched controls. Genetic loci that were identified in the pooling study were genotyped in patients and controls using TaqMan genotyping technology. RESULTS: We identified genetic associations between Behçet's disease and single-nucleotide polymorphisms (SNPs) in KIAA1529, CPVL, LOC100129342, UBASH3B, and UBAC2 (odds ratio = 2.04, 2.26, 1.84, 1.71, and 1.61, respectively; P value = 4.2 x 10-5, 1.0 x 10-4, 3.0 x 10-4, 1.5 x 10-3, and 5.8 x 10-3, respectively). Among the associated SNPs, the Behçet's disease-risk allele in rs2061634 leads to substitution of serine to cysteine at amino acid position 995 (S995C) in the KIAA1529 protein. CONCLUSIONS: Using an unbiased whole-genome genetic association approach, we identified novel candidate genetic loci that are associated with increased susceptibility for Behçet's disease. These findings will help to better understand the pathogenesis of Behçet's disease and identify novel targets for therapeutic intervention.


Subject(s)
Behcet Syndrome/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Adult , Behcet Syndrome/epidemiology , Cohort Studies , Female , Genetic Predisposition to Disease/epidemiology , Humans , Male , Middle Aged , Young Adult
19.
Rheum Dis Clin North Am ; 34(4): 847-68, vii, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18984408

ABSTRACT

The evidence for a strong genetic component conferring susceptibility to primary Sjögren's syndrome (SS) is mounting. Several associations with SS have been reported and provide evidence that the HLA region harbors important susceptibility loci and that multiple genes outside the HLA region play a role. Genetic discovery lags behind success observed in related autoimmune diseases. Identifying genetic factors that cause SS will allow more precise definition of pathogenic mechanisms leading to the overall SS phenotype and clinically heterogeneous subsets of patients. Critical opportunities are certain to follow for translation into improved diagnosis and therapies for SS and its spectrum diseases.


Subject(s)
Genetic Predisposition to Disease , Sjogren's Syndrome/genetics , Autoimmunity/genetics , HLA Antigens/genetics , Humans
20.
Nat Genet ; 40(2): 204-10, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18204446

ABSTRACT

Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (lambda(S) = approximately 30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 x 10(-7) < P(overall) < 1.6 x 10(-23); odds ratio = 0.82-1.62) in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 x 10(-5)) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at > or =9 other loci (P < 2 x 10(-7)). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.


Subject(s)
CD11b Antigen/genetics , Genetic Variation , Genome, Human , Intracellular Signaling Peptides and Proteins/genetics , Lupus Erythematosus, Systemic/genetics , Nerve Tissue Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Alleles , Area Under Curve , Case-Control Studies , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 16 , Chromosomes, Human, Pair 3 , Chromosomes, Human, Pair 6 , Cohort Studies , Confidence Intervals , Female , Genetic Markers , Genetic Predisposition to Disease , HLA Antigens/genetics , Haplotypes , Humans , Interferon Regulatory Factors/genetics , Linkage Disequilibrium , Logistic Models , Lupus Erythematosus, Systemic/immunology , Odds Ratio , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , ROC Curve , Risk Factors , STAT4 Transcription Factor/genetics , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...