Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 1860, 2019.
Article in English | MEDLINE | ID: mdl-31456800

ABSTRACT

Lipid metabolism plays a key role in many cellular processes. We show here that regulatory T cells have enhanced lipid storage within subcellular lipid droplets (LD). They also express elevated amounts of both isoforms of diacylglycerol acyl transferase (DGAT1 & 2), enzymes required for the terminal step of triacylglycerol synthesis. In regulatory T-cells (Tregs), the conversion of diacylglycerols to triacylglycerols serves two additional purposes other than lipid storage. First, we demonstrate that it protects T cells from the toxic effects of saturated long chain fatty acids. Second, we show that Triglyceride formation is essential for limiting activation of protein kinase C via free diacyl glycerol moieties. Inhibition of DGAT1 resulted in elevated active PKC and nuclear NFKB, as well as impaired Foxp3 induction in response to TGFß. Thus, Tregs utilize a positive feedback mechanism to promote sustained expression of Foxp3 associated with control of LD formation.


Subject(s)
Forkhead Transcription Factors/genetics , T-Lymphocytes, Regulatory/metabolism , Triglycerides/metabolism , Animals , CD2 Antigens/genetics , CD52 Antigen/genetics , Cell Line , Diacylglycerol O-Acyltransferase/metabolism , Fatty Acids/metabolism , Female , Forkhead Transcription Factors/biosynthesis , Humans , Lipid Droplets/metabolism , Metabolome , Mice , Protein Kinase C/metabolism , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/immunology
2.
JCI Insight ; 2(3): e89160, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28194435

ABSTRACT

Tregs can adopt a catabolic metabolic program with increased capacity for fatty acid oxidation-fueled oxidative phosphorylation (OXPHOS). It is unclear why this form of metabolism is favored in Tregs and, more specifically, whether this program represents an adaptation to the environment and developmental cues or is "hardwired" by Foxp3. Here we show, using metabolic analysis and an unbiased mass spectroscopy-based proteomics approach, that Foxp3 is both necessary and sufficient to program Treg-increased respiratory capacity and Tregs' increased ability to utilize fatty acids to fuel oxidative phosphorylation. Foxp3 drives upregulation of components of all the electron transport complexes, increasing their activity and ATP generation by oxidative phosphorylation. Increased fatty acid ß-oxidation also results in selective protection of Foxp3+ cells from fatty acid-induced cell death. This observation may provide novel targets for modulating Treg function or selection therapeutically.


Subject(s)
Fatty Acids/metabolism , Forkhead Transcription Factors/metabolism , Proteomics/methods , T-Lymphocytes, Regulatory/metabolism , Adenosine Triphosphate/metabolism , Cell Nucleus/metabolism , Female , Humans , Lipid Metabolism , Mass Spectrometry , Oxidative Phosphorylation , Up-Regulation
3.
Front Immunol ; 8: 1949, 2017.
Article in English | MEDLINE | ID: mdl-29375572

ABSTRACT

The differentiation and effector functions of both the innate and adaptive immune system are inextricably linked to cellular metabolism. The features of metabolism which affect both arms of the immune system include metabolic substrate availability, expression of enzymes, transport proteins, and transcription factors which control catabolism of these substrates, and the ability to perform anabolic metabolism. The control of lipid metabolism is central to the appropriate differentiation and functions of T lymphocytes, and ultimately to the maintenance of immune tolerance. This review will focus on the role of fatty acid (FA) metabolism in T cell differentiation, effector function, and survival. FAs are important sources of cellular energy, stored as triglycerides. They are also used as precursors to produce complex lipids such as cholesterol and membrane phospholipids. FA residues also become incorporated into hormones and signaling moieties. FAs signal via nuclear receptors and their channeling, between storage as triacyl glycerides or oxidation as fuel, may play a role in survival or death of the cell. In recent years, progress in the field of immunometabolism has highlighted diverse roles for FA metabolism in CD4 and CD8 T cell differentiation and function. This review will firstly describe the sensing and modulation of the environmental FAs and lipid intracellular signaling and will then explore the key role of lipid metabolism in regulating the balance between potentially damaging pro-inflammatory and anti-inflammatory regulatory responses. Finally the complex role of extracellular FAs in determining cell survival will be discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...