Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Host Microbe ; 31(1): 58-68.e5, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36459997

ABSTRACT

Redondoviruses are circular Rep-encoding single-stranded DNA (CRESS) viruses of high prevalence in healthy humans. Redondovirus abundance is increased in oro-respiratory samples from individuals with periodontitis, acute illness, and severe COVID-19. We investigated potential host cells supporting redondovirus replication in oro-respiratory samples and uncovered the oral amoeba Entamoeba gingivalis as a likely host. Redondoviruses are closely related to viruses of Entamoeba and contain reduced GC nucleotide content, consistent with Entamoeba hosts. Redondovirus and E. gingivalis co-occur in metagenomic data from oral disease and healthy human cohorts. When grown in xenic cultures with feeder bacteria, E. gingivalis was robustly positive for redondovirus RNA and DNA. A DNA proximity-ligation assay (Hi-C) on xenic culture cells showed enriched cross-linking of redondovirus and Entamoeba DNA, supporting E. gingivalis as the redondovirus host. While bacteria are established hosts for bacteriophages within the human virome, this work shows that eukaryotic commensals also contribute an abundant human-associated virus.


Subject(s)
Bacteriophages , COVID-19 , Entamoeba , Periodontitis , Viruses , Humans , Entamoeba/genetics , Bacteria
3.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34769481

ABSTRACT

Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient's lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa, even though this patient's strain was resistant to this antibiotic. The treatment stabilized the patient's lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.


Subject(s)
Cystic Fibrosis/microbiology , Metagenomics/methods , Microbiota , Adult , Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Cystic Fibrosis/therapy , Genomics/methods , Humans , Lung/microbiology , Male , Metabolomics/methods , Microbiota/genetics , Respiratory Function Tests , Respiratory Insufficiency/genetics , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/microbiology , Respiratory Insufficiency/therapy , Sputum/microbiology
4.
mBio ; 12(4): e0177721, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34399607

ABSTRACT

Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Here, we investigated the respiratory tract microbiome in coronavirus disease 2019 (COVID-19) and its relationship to disease severity, systemic immunologic features, and outcomes. We examined 507 oropharyngeal, nasopharyngeal, and endotracheal samples from 83 hospitalized COVID-19 patients as well as non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, and the commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR. We found that COVID-19 patients had upper respiratory microbiome dysbiosis and greater change over time than critically ill patients without COVID-19. Oropharyngeal microbiome diversity at the first time point correlated inversely with disease severity during hospitalization. Microbiome composition was also associated with systemic immune parameters in blood, as measured by lymphocyte/neutrophil ratios and immune profiling of peripheral blood mononuclear cells. Intubated patients showed patient-specific lung microbiome communities that were frequently highly dynamic, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Thus, the respiratory tract microbiome and commensal viruses are disturbed in COVID-19 and correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, its possible use as biomarkers, and the role of bacterial and viral taxa identified here in COVID-19 pathogenesis. IMPORTANCE COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Early airway samples tracked with the level of COVID-19 illness reached during hospitalization, and the airway microbiome also correlated with immune parameters in blood. These findings raise questions about the mechanisms linking SARS-CoV-2 infection and other microbial inhabitants of the airway, including whether the microbiome might regulate severity of COVID-19 disease and/or whether early microbiome features might serve as biomarkers to discriminate disease severity.


Subject(s)
Bacteria/classification , Dysbiosis/microbiology , Lung/microbiology , Nasopharynx/microbiology , Oropharynx/microbiology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Anelloviridae/classification , Anelloviridae/genetics , Anelloviridae/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/pathology , Female , Humans , Lymphocyte Count , Male , Microbiota , Middle Aged , RNA, Ribosomal, 16S/genetics , Severity of Illness Index
5.
medRxiv ; 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33851179

ABSTRACT

Rationale: Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Objective: To define the respiratory tract microbiome in COVID-19 and relationship disease severity, systemic immunologic features, and outcomes. Methods and Measurements: We examined 507 oropharyngeal, nasopharyngeal and endotracheal samples from 83 hospitalized COVID-19 patients, along with non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR, and immune features were characterized by lymphocyte/neutrophil (L/N) ratios and deep immune profiling of peripheral blood mononuclear cells (PBMC). Main Results: COVID-19 patients had upper respiratory microbiome dysbiosis, and greater change over time than critically ill patients without COVID-19. Diversity at the first time point correlated inversely with disease severity during hospitalization, and microbiome composition was associated with L/N ratios and PBMC profiles in blood. Intubated patients showed patient-specific and dynamic lung microbiome communities, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Conclusions: The respiratory tract microbiome and commensal virome are disturbed in COVID-19, correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, possible use as biomarkers, and role of bacterial and viral taxa identified here in COVID-19 pathogenesis.

6.
J Vis Exp ; (170)2021 04 09.
Article in English | MEDLINE | ID: mdl-33900300

ABSTRACT

To control community transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the 2020 global pandemic, most countries implemented strategies based on direct human testing, face covering, and surface disinfection. Under the assumption that the main route of transmission includes aerosols and respiratory droplets, efforts to detect SARS-CoV-2 in fomites have focused on locations suspected of high prevalence (e.g., hospital wards, cruise ships, and mass transportation systems). To investigate the presence of SARS-CoV-2 on surfaces in the urban environment that are rarely cleaned and seldomly disinfected, 350 citizens were enlisted from the greater San Diego County. In total, these citizen scientists collected 4,080 samples. An online platform was developed to monitor sampling kit delivery and pickup, as well as to collect sample data. The sampling kits were mostly built from supplies available in pandemic-stressed stores. Samples were processed using reagents that were easy to access despite the recurrent supply shortage. The methods used were highly sensitive and resistant to inhibitors that are commonly present in environmental samples. The proposed experimental design and processing methods were successful at engaging numerous citizen scientists who effectively gathered samples from diverse surface areas. The workflow and methods described here are relevant to survey the urban environment for other viruses, which are of public health concern and pose a threat for future pandemics.


Subject(s)
Environmental Microbiology , SARS-CoV-2/isolation & purification , Aerosols , Disinfection , Humans , Specimen Handling
7.
mSystems ; 5(4)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32723799

ABSTRACT

Many commensal bacteria antagonize each other or their host by producing syringe-like secretion systems called contractile injection systems (CIS). Members of the Bacteroidales family have been shown to produce only one type of CIS-a contact-dependent type 6 secretion system that mediates bacterium-bacterium interactions. Here, we show that a second distinct cluster of genes from Bacteroidales bacteria from the human microbiome may encode yet-uncharacterized injection systems that we term Bacteroidales injection systems (BIS). We found that BIS genes are present in the gut microbiomes of 99% of individuals from the United States and Europe and that BIS genes are more prevalent in the gut microbiomes of healthy individuals than in those individuals suffering from inflammatory bowel disease. Gene clusters similar to that of the BIS mediate interactions between bacteria and diverse eukaryotes, like amoeba, insects, and tubeworms. Our findings highlight the ubiquity of the BIS gene cluster in the human gut and emphasize the relevance of the gut microbiome to the human host. These results warrant investigations into the structure and function of the BIS and how they might mediate interactions between Bacteroidales bacteria and the human host or microbiome.IMPORTANCE To engage with host cells, diverse pathogenic bacteria produce syringe-like structures called contractile injection systems (CIS). CIS are evolutionarily related to the contractile tails of bacteriophages and are specialized to puncture membranes, often delivering effectors to target cells. Although CIS are key for pathogens to cause disease, paradoxically, similar injection systems have been identified within healthy human microbiome bacteria. Here, we show that gene clusters encoding a predicted CIS, which we term Bacteroidales injection systems (BIS), are present in the microbiomes of nearly all adult humans tested from Western countries. BIS genes are enriched within human gut microbiomes and are expressed both in vitro and in vivo Further, a greater abundance of BIS genes is present within healthy gut microbiomes than in those humans with with inflammatory bowel disease (IBD). Our discovery provides a potentially distinct means by which our microbiome interacts with the human host or its microbiome.

8.
Proc Natl Acad Sci U S A ; 117(24): 13588-13595, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32482859

ABSTRACT

Viruses, microbes, and host macroorganisms form ecological units called holobionts. Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence microscopy was used to investigate how the different components of the holobiont including bacteria, viruses, and their associated metabolites mediate ecological interactions between corals and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-turf algae interface displaying higher microbial abundances and larger microbial cells. This was consistent with previous studies showing that turf algae exudates feed interface and coral-associated microbial communities, often at the detriment of the coral. Further supporting this hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we found that the turf algal metabolites were significantly more reduced (i.e., have higher potential energy) compared to the corals and interfaces. The algae feeding hypothesis was further supported when the ecological outcomes of interactions (e.g., whether coral was winning or losing) were considered. For example, coral holobionts losing the competition with turf algae had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in bacterial growth and division. These changes were similar to trends observed in the obese human gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the long-term health of the metazoan host. Together these results show that there are specific biogeochemical changes at coral-turf algal interfaces that predict the competitive outcomes between holobionts and are consistent with algal exudates feeding coral-associated microbes.


Subject(s)
Anthozoa/metabolism , Chlorophyta/metabolism , Animals , Anthozoa/chemistry , Anthozoa/microbiology , Anthozoa/parasitology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Chlorophyta/chemistry , Coral Reefs , Ecosystem , Metagenomics , Microbiota
9.
Genome Announc ; 2(4)2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25125645

ABSTRACT

The high-quality draft genomes of two Vibrio parahaemolyticus strains, one that causes the acute hepatopancreatic necrosis disease (AHPND) in cultured shrimps (FIM-S1708(+)), and another that does not (FIM-S1392(-)) are reported. A chromosome-scale assembly for the FIM-S1392(-) genome is reported here. The analysis of the two genomes gives some clues regarding the genomic differences between the strains.

10.
Virol J ; 10: 41, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23369604

ABSTRACT

BACKGROUND: Pandemic type A (H1N1) influenza arose in early 2009, probably in Mexico and the United States, and reappeared in North America in September for seven more months. An amino acid substitution in the hemagglutinin (HA), D222G, has been reported in a significant proportion of patients with a severe and fatal outcome. We studied the prevalence of HA222 substitutions in patients in Mexico during the second wave and its association with clinical outcome and pathogenicity in a mouse model. METHODS: The nucleotide sequences of hemagglutinin (HA) from viruses collected from 77 patients were determined including 50 severe and fatal cases and 27 ambulatory cases. Deep sequencing was done on 5 samples from severe or fatal cases in order to determine the quasispecies proportion. Weight loss and mortality due to infection with cultured influenza viruses were analyzed in a mouse model. RESULTS: Viruses from 14 out of 50 hospitalized patients (28%) had a non aspartic acid residue at the HA 222 position (nD222), while all 27 ambulatory patients had D222 (p=0.0014). G222 was detected as sole species or in coexistence with N222 and D222 in 12 patients with severe disease including 8 who died. N222 in coexistence with D222 was detected in 1 patient who died and co-occurrence of A222 and V222, together with D222, was detected in another patient who died. The patients with a nD222 residue had higher mortality (71.4%), compared to the group with only D222 (22.2%, p=0.0008). Four of the 14 viruses from hospitalized patients were cultured and intranasally infected into mice. Two viruses with G222 were lethal while a third virus, with G222, caused only mild illness in mice similar to the fourth virus that contained D222. CONCLUSIONS: We confirm the elevated incidence of HA222 (H1N1)pdm09 variants in severe disease and mortality. Both clinical and mouse infection data support the idea that nD222 mutations contribute to increased severity of disease but additional determinants in disease outcome may be present.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/mortality , Influenza, Human/pathology , Severity of Illness Index , Virulence Factors/genetics , Adult , Animals , Base Sequence , Body Weight , Disease Models, Animal , Female , Histocytochemistry , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Lung/pathology , Male , Mexico/epidemiology , Mice , Middle Aged , Molecular Sequence Data , Mutation, Missense , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , RNA, Viral/genetics , Sequence Alignment , Sequence Analysis, DNA , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...