Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37746061

ABSTRACT

Mutations in the RNA-binding protein FUS are linked to amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). FUS mutants mislocalize and aggregate in dying neurons. We previously established that FUS proteinopathy is linked to changes in the histone modification landscape in a yeast ALS/FTD model. Here, we examine whether FUS' RNA binding is necessary for this connection. We find that overexpression of a FUS mutant unable to bind RNA is still associated with reduced levels of H3S10ph, H3K14ac and H3K56ac. Hence, FUS' ability to bind RNA is not required in the mechanism connecting FUS proteinopathy to altered histone post-translational modifications.

2.
Pathogens ; 11(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36558770

ABSTRACT

Prions are proteins able to take on alternative conformations and propagate them in a self-templating process. In Saccharomyces cerevisiae, prions enable heritable responses to environmental conditions through bet-hedging mechanisms. Hence, [PRION+] states may serve as an atypical form of epigenetic control, producing heritable phenotypic change via protein folding. However, the connections between prion states and the epigenome remain unknown. Do [PRION+] states link to canonical epigenetic channels, such as histone post-translational modifications? Here, we map out the histone H3 modification landscape in the context of the [SWI+] and [PIN+] prion states. [SWI+] is propagated by Swi1, a subunit of the SWI/SNF chromatin remodeling complex, while [PIN+] is propagated by Rnq1, a protein of unknown function. We find [SWI+] yeast display decreases in the levels of H3K36me2 and H3K56ac compared to [swi-] yeast. In contrast, decreases in H3K4me3, H3K36me2, H3K36me3 and H3K79me3 are connected to the [PIN+] state. Curing of the prion state by treatment with guanidine hydrochloride restored histone PTM to [prion-] state levels. We find histone PTMs in the [PRION+] state do not match those in loss-of-function models. Our findings shed light into the link between prion states and histone modifications, revealing novel insight into prion function in yeast.

3.
ACS Pharmacol Transl Sci ; 5(2): 134-137, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35187420

ABSTRACT

Breakthroughs in understanding the epigenetic mechanisms involved in neurodegenerative disease have highlighted "epidrugs" as a potential avenue for therapeutic development. Here, we expand on the future of epidrugs against neurodegeneration and discuss promising novel targets underexploited thus far: histone kinases.

4.
MicroPubl Biol ; 20212021.
Article in English | MEDLINE | ID: mdl-34746682

ABSTRACT

Alzheimer's Disease (AD), the most common type of dementia, is a neurodegenerative disease characterized by plaques of amyloid-beta (Aß) peptides found in the cerebral cortex of the brain. The pathological mechanism by which Aß aggregation leads to neurodegeneration remains unknown. Interestingly, genetic mutations do not explain most AD cases suggesting that other mechanisms are at play. Epigenetic mechanisms, such as histone post-translational modifications (PTMs), may provide insight into the development of AD. Here, we exploit a yeast Aß overexpression model to map out the histone PTM landscape associated with AD. We find a modest decrease in the acetylation levels on lysine 9 of histone H3 in the context of Aß 1-40 overexpression. This change is accompanied by a decrease in RNA levels. Our results support a potential role for H3K9ac in AD pathology and allude to the role of epigenetics in AD and other neurodegenerative diseases.

5.
Biochemistry ; 60(48): 3671-3675, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34788013

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that often occurs concurrently with frontotemporal dementia (FTD), another disorder involving progressive neuronal loss. ALS and FTD form a neurodegenerative continuum and share pathological and genetic features. Mutations in a multitude of genes have been linked to ALS/FTD, including FUS. The FUS protein aggregates and forms inclusions within affected neurons. However, the precise mechanisms connecting protein aggregation to neurotoxicity remain under intense investigation. Recent evidence points to the contribution of epigenetics to ALS/FTD. A main epigenetic mechanism involves the post-translational modification (PTM) of histone proteins. We have previously characterized the histone PTM landscape in a FUS ALS/FTD yeast model, finding a decreased level of acetylation on lysine residues 14 and 56 of histone H3. Here, we describe the first report of amelioration of disease phenotypes by controlling histone acetylation on specific modification sites. We show that inhibiting histone deacetylases, via treatment with trichostatin A, suppresses the toxicity associated with FUS overexpression in yeast by preserving the levels of H3K56ac and H3K14ac without affecting the expression or aggregation of FUS. Our data raise the novel hypothesis that the toxic effect of protein aggregation in neurodegeneration is related to its association with altered histone marks. Altogether, we demonstrate the ability to counter the repercussions of protein aggregation on cell survival by preventing specific histone modification changes. Our findings launch a novel mechanistic framework that will enable alternative therapeutic approaches for ALS/FTD and other neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Histones/metabolism , Hydroxamic Acids/pharmacology , RNA-Binding Protein FUS/genetics , Acetylation/drug effects , Amyotrophic Lateral Sclerosis/drug therapy , Epigenesis, Genetic , Frontotemporal Dementia/drug therapy , Histone Code/genetics , Histones/genetics , Humans , Mutation/genetics , Neurons/drug effects , Neurons/pathology , Protein Aggregates/genetics , Protein Aggregation, Pathological/genetics , Saccharomyces cerevisiae/genetics
6.
ChemMedChem ; 16(21): 3280-3292, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34329530

ABSTRACT

Triple negative breast cancer (TNBC) is one of the breast cancers with poorer prognosis and survival rates. TNBC has a disproportionally high incidence and mortality in women of African descent. We report on the evaluation of Ru-IM (1), a water-soluble organometallic ruthenium compound, in TNBC cell lines derived from patients of European (MDA-MB-231) and African (HCC-1806) ancestry (including IC50 values, cellular and organelle uptake, cell death pathways, cell cycle, effects on migration, invasion, and angiogenesis, a preliminary proteomic analysis, and an NCI 60 cell-line panel screen). 1 was previously found highly efficacious in MDA-MB-231 cells and xenografts, with little systemic toxicity and preferential accumulation in the tumor. We observe a similar profile for this compound in the two cell lines studied, which includes high cytotoxicity, apoptotic behavior and potential antimetastatic and antiangiogenic properties. Cytokine M-CSF, involved in the PI3/AKT pathway, shows protein expression inhibition with exposure to 1. We also demonstrate a p53 independent mechanism of action.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Imines/pharmacology , Phosphoranes/pharmacology , Rubidium/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Imines/chemistry , Molecular Structure , Phosphoranes/chemistry , Rubidium/chemistry , Structure-Activity Relationship , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
7.
J Vis Exp ; (145)2019 03 24.
Article in English | MEDLINE | ID: mdl-30958470

ABSTRACT

Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD), cause the loss of hundreds of thousands of lives each year. Effective treatment options able to halt disease progression are lacking. Despite the extensive sequencing efforts in large patient populations, the majority of ALS and PD cases remain unexplained by genetic mutations alone. Epigenetics mechanisms, such as the post-translational modification of histone proteins, may be involved in neurodegenerative disease etiology and progression and lead to new targets for pharmaceutical intervention. Mammalian in vivo and in vitro models of ALS and PD are costly and often require prolonged and laborious experimental protocols. Here, we outline a practical, fast, and cost-effective approach to determining genome-wide alterations in histone modification levels using Saccharomyces cerevisiae as a model system. This protocol allows for comprehensive investigations into epigenetic changes connected to neurodegenerative proteinopathies that corroborate previous findings in different model systems while significantly expanding our knowledge of the neurodegenerative disease epigenome.


Subject(s)
Genomics , Histones/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae , Disease Progression , Epigenesis, Genetic , Neurodegenerative Diseases/pathology
8.
Biochim Biophys Acta Mol Basis Dis ; 1865(8): 1982-1991, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30352259

ABSTRACT

Every year, neurodegenerative disorders take more than 5000 lives in the US alone. Cures have not yet been found for many of the multitude of neuropathies. The majority of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and Parkinson's disease (PD) cases have no known genetic basis. Thus, it is evident that contemporary genetic approaches have failed to explain the etiology or etiologies of ALS/FTD and PD. Recent investigations have explored the potential role of epigenetic mechanisms in disease development. Epigenetics comprises heritable changes in gene utilization that are not derived from changes in the genome. A main epigenetic mechanism involves the post-translational modification of histones. Increased knowledge of the epigenomic landscape of neurodegenerative diseases would not only further our understanding of the disease pathologies, but also lead to the development of treatments able to halt their progress. Here, we review recent advances on the association of histone post-translational modifications with ALS, FTD, PD and several ataxias.


Subject(s)
Epigenesis, Genetic , Histone Code , Neurodegenerative Diseases/genetics , Protein Processing, Post-Translational , Amyotrophic Lateral Sclerosis/genetics , Animals , Ataxia/genetics , Frontotemporal Dementia/genetics , Histones/analysis , Histones/genetics , Humans , Parkinson Disease/genetics
9.
Transl Res ; 204: 19-30, 2019 02.
Article in English | MEDLINE | ID: mdl-30391475

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the third most common adult onset neurodegenerative disorder worldwide. It is generally characterized by progressive paralysis starting at the limbs ultimately leading to death caused by respiratory failure. There is no cure and current treatments fail to slow the progression of the disease. As such, new treatment options are desperately needed. Epigenetic targets are an attractive possibility because they are reversible. Epigenetics refers to heritable changes in gene expression unrelated to changes in DNA sequence. Three main epigenetic mechanisms include the methylation of DNA, microRNAs and the post-translational modification of histone proteins. Histone modifications occur in many amino acid residues and include phosphorylation, acetylation, methylation as well as other chemical moieties. Recent evidence points to a possible role for epigenetic mechanisms in the etiology of ALS. Here, we review recent advances linking ALS and epigenetics, with a strong focus on histone modifications. Both local and global changes in histone modification profiles are associated with ALS drawing attention to potential targets for future diagnostic and treatment approaches.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Epigenesis, Genetic , Histones/metabolism , Protein Processing, Post-Translational , Acetylation , Amyotrophic Lateral Sclerosis/etiology , Animals , Chromatin Assembly and Disassembly , DNA Methylation , Humans , MicroRNAs/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...