Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Biomed Mater Res A ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38623028

ABSTRACT

Diabetic foot ulcers are a serious complication of uncontrolled diabetes, emphasizing the need to develop wound healing strategies that are not only effective but also biocompatible, biodegradable, and safe. We aimed to create biomatrices composed of semi-interpenetrated polymer networks of collagen, polyurethane, and dextran, to enhance the wound healing process. The hydrogels were extensively characterized by various analytical techniques, including analysis of their structure, crystallinity, thermal properties, gelation process, reticulation, degradation, cell proliferation, and healing properties, among others. Semi-interpenetrated hydrogels containing dextran at levels of 10%, 20%, and 30% exhibited porous interconnections between collagen fibers and entrapped dextran granules, with a remarkable crosslinking index of up to 94% promoted by hydrogen bonds. These hydrogels showed significant improvements in mechanical properties, swelling, and resistance to proteolytic and hydrolytic degradation. After 24 h, there was a significant increase in the viability of several cell types, including RAW 264.7 cells, human peripheral blood mononuclear cells, and dermal fibroblasts. In addition, these hydrogels demonstrated an increased release of interleukin-10 and transforming growth factor-beta1 while inhibiting the release of monocyte chemotactic protein-1 and tumor necrosis factor-alpha after 72 h. Furthermore, these hydrogels accelerated the wound healing process in diabetic rats after topical application. Notably, the biomaterial with 20% dextran (D20) facilitated wound closure in only 21 days. These results highlight the potential of the D20 hydrogel, which exhibits physicochemical and biological properties that enhance wound healing by inhibiting inflammation and fibrillogenesis while remaining safe for application to the skin.

2.
Nat Prod Res ; : 1-5, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37840267

ABSTRACT

Porophyllum ruderale (Jacq.) Cass. (Asteraceae) has antiprotozoal properties and contains extractable phenolic compounds by the maceration method (M). However, new extraction proposals such as ultrasound (U), microwaves (MW), and ultrasound/microwaves (U/MW) have emerged to optimise yields, but it is unknown if these methods modify effectiveness. Therefore, the study consisted of extracting the aerial part of P. ruderale with ethanol using the M, U, MW and U/MW methods to study its composition by RP-HPLC-ESI-MS, its total polyphenol content and its effect against Entamoeba histolytica. The study showed that U, MW and U/MW did not modify the extraction yield compared to M, but they did change the composition and the total polyphenol content. All extracts contain phloretin, caffeic acid 4-O-glucoside, todolactol A, quercetin 3-O-glucoside, quercetin 3-O-rhamnoside, luteolin and 3,7-dimethylquercetin, and affected the growth of E. histolytica. However, M and U extracts were the most effective at 5 mg/mL.

3.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37111271

ABSTRACT

Traditionally, Equisetum hyemale has been used for wound healing. However, its mechanism of action remains to be elucidated. For this purpose, a 40% ethanolic extract of E. hyemale was prepared. Phytochemical screening revealed the presence of minerals, sterols, phenolic acids, flavonols, a lignan, and a phenylpropenoid. The extract reduced the viability of RAW 264.7 cells and skin fibroblasts at all times evaluated. On the third day of treatment, this reduction was 30-40% and 15-40%, respectively. In contrast, the extract increased the proliferation of skin fibroblasts only after 48 h. In addition, the extract increased IL-10 release and inhibited MCP-1 release. However, the extract did not affect both TGF-ß1 and TNF-α released by RAW 264.7 cells. The higher release of IL-10 could be related to the up-/downregulation of inflammatory pathways mediated by the extract components associated with their bioactivity. The extract inhibited the growth of Staphylococcus aureus and Escherichia coli. Topical application of the extract accelerated wound healing in diabetic rats by increasing fibroblast collagen synthesis. These results suggest that E. hyemale extract has great potential for use in the treatment of wounds thanks to its phytochemical composition that modulates cytokine secretion, collagen synthesis, and bacterial growth.

4.
Antibiotics (Basel) ; 10(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946930

ABSTRACT

The present research focused on evaluating the antibacterial effect and the mechanism of action of partially purified fractions of an extract of Persea americana. Furthermore, both its antioxidant capacity and composition were evaluated. The extract was fractionated by vacuum liquid chromatography. The antimicrobial effect against Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 11229), Pseudomonas aeruginosa (ATCC 15442), and Salmonella choleraesuis (ATCC 1070) was analyzed by microdilution and the mechanism of action by the Sytox green method. The antioxidant capacity was determined by DPPH, FRAP, and ABTS techniques and the composition by Rp-HPLC-MS. All fractions showed a concentration-dependent antibacterial effect. Fractions F3, F4, and F5 (1000 µg/mL) showed a better antibacterial effect than the extract against the bacteria mentioned. The F3 fraction showed inhibition of 95.43 ± 3.04% on S. aureus, F4 showed 93.30 ± 0.52% on E. coli, and F5 showed 88.63 ± 1.15% on S. choleraesuis and 86.46 ± 3.20% on P. aeruginosa. The most susceptible strain to the treatment with the extract was S. aureus. Therefore, in this strain, the bacterial membrane damage induced by the extract and fractions was evidenced by light fluorescence microscopy. Furthermore, the extract had better antioxidant action than each fraction. Finally, sinensitin was detected in F3 and cinnamoyl glucose, caffeoyl tartaric acid, and cyanidin 3-O-(6''-malonyl-3''-glucosyl-glucoside) were detected in F4; esculin and kaempferide, detected in F5, could be associated with the antibacterial and antioxidant effect.

5.
Arch Med Res ; 51(4): 310-316, 2020 05.
Article in English | MEDLINE | ID: mdl-32284200

ABSTRACT

BACKGROUND: Patients suffering from hypothyroidism tend to develop diastolic hypertension. 5-Hydroxytryptamine (5-HT) is an amine that contributes to the maintenance of the blood pressure through central and peripheral 5-HT receptors. Curiously, the hypothyroidism alters the density of the 5-HT receptors in rodent brains. AIM OF THE STUDY: Analyze the effect of the methimazole-induced hypothyroidism on the peripheral cardiovascular responses elicited by 5-HT. METHODS: The vasopressor and tachycardic responses to 5-HT (3-300 µg/kg), and the vasodepressor responses to 5-HT, 5-carboxamidotryptamine (5-CT, 0.001-0.1 µg/kg), isoprenaline (0.03-1 µg/kg) and acetylcholine (ACh, 0.03-3 µg/kg), during an infusion of methoxamine, were determined in pithed hypothyroid rats. RESULTS: The tachycardic and vasopressor responses to 5-HT and the vasodepressor responses to 5-CT and ACh remained unaffected, the vasodepressor response to 5-HT reduced, and the vasodepressor response to isoprenaline enhanced and reduced at the lowest and highest dose, respectively. CONCLUSION: These results suggest that hypothyroidism impairs the vasodepressor response to 5-HT, which could contribute to hypothyroidism-induced hypertension.


Subject(s)
Cardiovascular Diseases/etiology , Hypothyroidism/drug therapy , Methimazole/adverse effects , Serotonin/therapeutic use , Animals , Cardiovascular Diseases/pathology , Hypothyroidism/chemically induced , Male , Methimazole/pharmacology , Rats , Rats, Wistar , Serotonin/pharmacology
6.
Curr Pharm Biotechnol ; 21(4): 287-297, 2020.
Article in English | MEDLINE | ID: mdl-31713475

ABSTRACT

BACKGROUND: ß-lactam antibiotics are the most used worldwide for the treatment of bacterial infections. The consumption of these classes of drugs is high, and it is increasing around the world. To date, the best way to produce them is using penicillin G Acylase (PGA) as a biocatalyst. OBJECTIVE: This manuscript offers an overview of the most recent advances in the current tools to improve the activity of the PGA and its pharmaceutical application. RESULTS: Several microorganisms produce PGA, but some bacterial strains represent the primary source of this enzyme. The activity of bacterial PGA depends on its adequate expression and carbon or nitrogen source, as well as a specific pH or temperature depending on the nature of the PGA. Additionally, the PGA activity can be enhanced by immobilizing it to a solid support to recycle it for a prolonged time. Likewise, PGAs more stable and with higher activity are obtained from bacterial hosts genetically modified. CONCLUSION: PGA is used to produce b-lactam antibiotics. However, this enzyme has pharmaceutical potential to be used to obtain critical molecules for the synthesis of anti-tumor, antiplatelet, antiemetic, antidepressive, anti-retroviral, antioxidant, and antimutagenic drugs.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Biotechnology/methods , Penicillin Amidase/metabolism , Technology, Pharmaceutical/methods , beta-Lactams/chemical synthesis , Gram-Negative Bacteria/enzymology , Gram-Positive Bacteria/enzymology , Penicillin Amidase/genetics , Temperature
7.
Bol. latinoam. Caribe plantas med. aromát ; 19(6): 580-590, 2020. graf, ilus
Article in English | MOSAICO - Integrative health, LILACS | ID: biblio-1145974

ABSTRACT

Tagetes lucida Cav. (Asteraceae = Compositae) se usa para tratar infecciones estomacales. El estudio se centró en evaluar la composición y el efecto antimicrobiano de un extracto de T. lucida Cav. La planta se extrajo con etanol al 10% p/v, y la composición del extracto se analizó por Rp-HPLC-MS. El efecto antibacteriano se evaluó contra Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa y Salmonella choleraesuis utilizando métodos de difusión por disco, microdilución y bioautografía. Los ensayos de sytox y cometa fueron utilizados para evaluar el mecanismo de acción. De esta forma, se detectaron nueve compuestos fenólicos en el extracto de T. lucida. El extracto exhibió actividad solo en S. aureus (MIC de 4.000 mg/ml). La bioautografía reveló que los compuestos fenólicos podrían actuar sinérgicamente. Las pruebas de sytox y cometa mostraron una acción antibacteriana del extracto sobre la membrana bacteriana y el ADN de esta cepa bacteriana.


Tagetes lucida Cav. (Asteraceae=Compositae) is used for treating stomach infections. The study focused on evaluating the composition and antimicrobial effect of an extract of T. lucida Cav. The plant extracted with ethanol at 10% w/v, and the extract composition analyzed by Rp-HPLC-MS. The antibacterial effect was evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella choleraesuis using disk diffusion, microdilution and bioautography methods. The sytox and comet assays were used to evaluate the mechanism of action. In this way, nine phenolic compounds were detected in the extract of T. lucida. The extract exhibited activity only on S. aureus (MIC of 4.000 mg/ml). The bioautography revealed that the phenolic compounds could act synergistically. The sytox and comet tests showed an antibacterial action of the extract on the bacterial membrane and DNA of this bacterial strain.


Subject(s)
Tagetes/chemistry , Anti-Bacterial Agents , Phenols , Plants, Medicinal , Pseudomonas aeruginosa , Staphylococcus aureus , Plant Extracts , Escherichia coli , Medicine, Traditional
8.
J Biol Inorg Chem ; 24(8): 1285-1303, 2019 12.
Article in English | MEDLINE | ID: mdl-31773268

ABSTRACT

Alzheimer's disease (AD) is the main cause of dementia in elderly. Increasing life expectancy is behind the growing prevalence of AD worldwide with approximately 45 million cases currently documented and projection studies suggesting a triplication of this number by 2050. Mexico does not have an accurate AD registry, but 860,000 cases were reported in 2014 and the prediction reaches 3.5 million cases by 2050. Amyloid plaques and neurofibrillary tangles represent the main hallmarks of AD, being constituted of amyloid beta (Aß) peptide and phosphorylated tau, respectively. The risk factors for AD include genetic mutations, lifestyle and environmental pollution. Particularly, lead (Pb) has attracted attention due to its ability to target multiple pathways involved in the pathophysiology of AD. Although the epidemiological data are limiting, animal and in vitro studies show growing evidence of causal effects of Pb exposure on AD-linked features including Aß aggregation and tau phosphorylation. Interestingly, many Pb effects occur selectively following early-life exposure to the metal, suggesting an epigenetic mechanism. This hypothesis is supported by changes in DNA methylation and microRNA expression patterns inflicted by early-life Pb exposure. Pb pollution in Mexico represents a significant problem because past and current mining activities, historical use of Pb as fuel additive and culturally rooted use of Pb in glazed ceramics, contribute to high levels of Pb pollution in Mexico. In this review we will discuss potential risks of AD development in Mexican populations chronically exposed to Pb in their childhood.


Subject(s)
Alzheimer Disease/etiology , Child Development/drug effects , Environmental Exposure/adverse effects , Lead/toxicity , Alzheimer Disease/genetics , Amyloid beta-Peptides/drug effects , Animals , Child , DNA/metabolism , DNA Methylation/drug effects , Environmental Pollutants/toxicity , Epigenesis, Genetic/drug effects , Humans , Mexico , Risk Factors , tau Proteins/drug effects
9.
Article in English | MEDLINE | ID: mdl-29962350

ABSTRACT

OBJECTIVE: Clonidine is a centrally acting antihypertensive drug. Hypotensive effect of clonidine is mediated mainly by central α2-adrenoceptors and/or imidazoline receptors located in a complex network of the brainstem. Unfortunately, clonidine produces side effects such as sedation, mouth dry, and depression. Moxonidine and rilmenidine, compounds of the second generation of imidazoline drugs, with fewer side effects, display a higher affinity for the imidazoline receptors compared with α2-adrenoceptors. The antihypertensive action of these drugs is due to inhibition of the sympathetic outflow primarily through central I1-imidazoline receptors in the RVLM, although others anatomical sites and mechanisms/receptors are involved. Agmatine is regarded as the endogenous ligand for imidazoline receptors. This amine modulates the cardiovascular function. Indeed, when administered in the RVLM mimics the hypotension of clonidine. RESULTS: Recent findings have shown that imidazoline drugs also exert biological response directly on the cardiovascular tissues, which can contribute to their antihypertensive response. Currently, new imidazoline receptors ligands are in development. CONCLUSION: In the present review, we provide a brief update on the cardiovascular effects of clonidine, moxonidine, rilmenidine, and the novel imidazoline agents since representing an important therapeutic target for some cardiovascular diseases.


Subject(s)
Cardiovascular System/drug effects , Imidazoline Receptors/therapeutic use , Humans
10.
Rev Med Inst Mex Seguro Soc ; 56(4): 387-394, 2018 11 30.
Article in Spanish | MEDLINE | ID: mdl-30521742

ABSTRACT

Alzheimer's disease (AD) is the main form of dementia in elderly population worldwide. By 2010 it was estimated that 35.6 million of people were living with this disease, and it was projected that this figure will triple by the year 2050. According to amyloid hypothesis, production and aggregation of amyloid beta (A-beta) peptide is the initial step in AD development. A-beta peptide is generated through proteolytic processing of amyloid precursor protein (APP); whereas its degradation depends on the action of a group of proteins collectively known as amyloiddegrading enzymes (ADE), which are reduced during aging and particularly in AD. Genetic therapy consists in the restoration of the genetic expression of a deficient protein to treat a disease. Brain restoration or overexpression of ADE reduces the levels and aggregates of A-beta, and improves learning and memory in animal models of AD. In this review we will describe the role of ADE in the regulation of A-beta levels, as well as its potential use in genetic therapy against AD.


La enfermedad de Alzheimer (EA) es la principal forma de demencia en adultos mayores a nivel mundial. En el año 2010 se estimó que 35.6 millones de personas padecen esta enfermedad y se proyectó que esta cifra se triplicará para el año 2050. De acuerdo con la hipótesis amiloide, la producción y agregación del péptido beta amiloide (A-beta) es el agente inicial en el desarrollo de la EA. El péptido A-beta se genera a partir del procesamiento proteolítico de la proteína precursora de amiloide (APP), y su degradación depende de un grupo de proteínas colectivamente conocidas como enzimas degradadoras de amiloide (EDA), las cuales se reducen durante el envejecimiento y particularmente en la EA. La terapia genética consiste en la restauración de la expresión genética de una proteína deficiente para tratar una enfermedad. La restauración o sobreexpresión cerebral de las EDA reduce los niveles y agregados de A-beta, y mejora el aprendizaje y la memoria en modelos animales de la EA. En la presente revisión se describe el papel de las EDA en la regulación de los niveles de A-beta, así como su uso potencial en la terapia genética contra la EA.

11.
Eur J Pharmacol ; 805: 75-83, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28315344

ABSTRACT

This study has investigated the role of the α2-adrenoceptor subtypes involved in the inhibition of the cardiac sympathetic outflow induced by intravenous (i.v) infusions of agmatine. Therefore, we analysed the effect of an i.v. bolus injections of the selective antagonists BRL 44408 (300µg/kg; α2A), imiloxan (3000µg/kg; α2B), and JP-1302 (300µg/kg; α2C) given separately, and their combinations: BRL 44408 plus Imiloxan, JP 1302 plus imiloxan, BRL 44408 plus JP-1302, BRL 44408 plus imiloxan plus JP-1302 on the cardiac sympatho-inhibition of agmatine. Also, the effect of the combination BRL 44408 plus JP-1302 plus AGN 192403 (3000µg/kg; I1 antagonist) was evaluated. In this way, i.v. infusions of 1000µg/kg min of agmatine, but not 300, inhibited the tachycardic response induced by electrical stimulation. Furthermore, the antagonists used or their combinations had no effect on the electrically-induced tachycardic response. On the other hand, the inhibitory response of agmatine was: (1) partially antagonized by BRL 44408 or JP-1302 given separately, a similar response was observed when we administered their combination with imiloxan, but not by imiloxan alone, (2) antagonized in greater magnitude by the combination BRL 44408 plus JP-1302 or the combination BRL 44408 plus imiloxan plus JP-1302, and (3) abolished by the combination BRL 44408 plus JP-1302 plus AGN 192403. Taken together, these results demonstrate that the α2A- and α2C-adrenoceptor subtypes and I1-imidazoline receptors are involved in the inhibition of the cardiac sympathetic outflow induced by agmatine.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/pharmacology , Agmatine/pharmacology , Heart/innervation , Receptors, Adrenergic, alpha-2/metabolism , Sympathetic Nervous System/drug effects , Acridines/pharmacology , Animals , Electric Stimulation , Heart/drug effects , Heart/physiology , Hemodynamics/drug effects , Imidazoles/pharmacology , Isoindoles/pharmacology , Male , Piperazines/pharmacology , Rats , Rats, Wistar , Sympathetic Nervous System/physiology , Tachycardia/physiopathology
12.
Eur J Pharmacol ; 791: 25-36, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27565220

ABSTRACT

This study shows that in spontaneously hypertensive rats (SHR) of 14-weeks-old, the sympathetically-induced, but not noradrenaline-induced tachycardic response are higher than age-matched Wistar normotensive rats. Furthermore, in SHR the sympathetically-induced tachycardic response was: (1) unaffected by moxonidine (3µg/kgmin); (2) partially inhibited by B-HT 933 (30µg/kgmin), both at the lowest doses; and (3) completely inhibited by the highest doses of B-HT 933 (100µg/kgmin), moxonidine (10µg/kgmin) or agmatine (1000 and 3000µg/kgmin) while the noradrenaline-induced tachycardic responses remained unaffected by the above compounds, except by 3000µg/kgmin agmatine. In SHR, 300µg/kg rauwolscine failed to block the sympatho-inhibition to 100µg/kgmin B-HT 933 or 10µg/kgmin moxonidine, but 1000µg/kg rauwolscine abolished, partially antagonized, and did not modify the sympatho-inhibition to the highest doses of B-HT 933, moxonidine, and agmatine, respectively, 3000µg/kg AGN 192403 or 300µg/kg BU224 given alone had no effect in the moxonidine- or agmatine-induced sympatho-inhibition, and the combination rauwolscine plus AGN 192403 but not plus BU224, abolished the sympatho-inhibition to the highest doses of moxonidine and agmatine. In conclusion, the sympathetically-induced tachycardic responses in SHR are inhibited by moxonidine and agmatine. The inhibition of moxonidine is mainly mediated by prejunctional α2-adrenoceptors and to a lesser extent by I1-imidazoline receptors, while the inhibition of agmatine is mediated by prejunctional α2-adrenoceptors and I1-imidazoline receptors at the same extent. Notwithstanding, the inhibitory function of α2-adrenoceptors seems to be altered in SHR compared with Wistar normotensive rats.


Subject(s)
Agmatine/pharmacology , Heart/drug effects , Heart/innervation , Imidazoles/pharmacology , Sympathetic Nervous System/drug effects , Animals , Bridged Bicyclo Compounds/pharmacology , Heart/physiopathology , Heart Rate/drug effects , Hemodynamics/drug effects , Heptanes/pharmacology , Male , Norepinephrine/pharmacology , Rats , Rats, Inbred SHR , Rats, Wistar , Sympathetic Nervous System/physiopathology , Yohimbine/pharmacology
13.
Eur J Pharmacol ; 782: 35-43, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27112661

ABSTRACT

Moxonidine centrally inhibits the sympathetic activity through the I1-imidazoline receptor and nitric oxide. In addition, inhibits the peripheral cardiac sympathetic outflow by α2-adrenoceptors/I1-imidazoline receptors, although the role of α2-adrenoceptor subtypes or nitric oxide in the cardiac sympatho-inhibition induced by moxonidine are unknown. Therefore, the cardiac sympatho-inhibition induced by moxonidine (10µg/kgmin) was evaluated before and after of the treatment with the following antagonists/inhibitor: (1) BRL 44408, (300µg/kg, α2A), imiloxan, (3000µg/kg, α2B), and JP-1302, (300µg/kg, α2C), in animals pretreated with AGN 192403 (3000µg/kg, I1 antagonist); (2) N(ω)-nitro-l-arginine methyl ester (l-NAME; 34, 100, and 340µg/kgmin); and (3) the combinations of the highest dose of l-NAME plus AGN 192403 or BRL 44408. Additionally, the expression of the neuronal (nNOS) and inducible (iNOS) nitric oxide synthase in the stellate ganglion was determined after treatment with moxonidine (i.p. 0.56mg/kg daily, during one week). The cardiac sympatho-inhibition of 10µg/kgmin moxonidine was: (1) unaffected by imiloxan and JP-1302, under pretreatment with AGN 192403, or l-NAME (34, 100 and 340µg/kgmin) given alone; (2) partially antagonized by the combination of 340 µg/kgmin l-NAME plus BRL 44408; and (3) abolished by BRL 44408 under treatment with AGN 192403. Furthermore, moxonidine did not modify the nNOS or iNOS protein expression in the stellate ganglion, the main source of postganglionic sympathetic neurons innervating the heart. In conclusion, our results suggest that the peripheral cardiac sympatho-inhibition induced by moxonidine is mediated by α2A-adrenoceptor subtype but not by nitric oxide.


Subject(s)
Heart/innervation , Imidazoles/pharmacology , Receptors, Adrenergic, alpha-2/metabolism , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Animals , Gene Expression Regulation, Enzymologic/drug effects , Heart/drug effects , Hemodynamics/drug effects , Male , NG-Nitroarginine Methyl Ester/metabolism , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Wistar , Stellate Ganglion/drug effects , Stellate Ganglion/metabolism , Stellate Ganglion/physiology , Stellate Ganglion/physiopathology , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology , Tachycardia/metabolism , Tachycardia/physiopathology
14.
Steroids ; 89: 33-40, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25072792

ABSTRACT

Progesterone and 17ß-estradiol induce vasorelaxation through non-genomic mechanisms in several isolated blood vessels; however, no study has systematically evaluated the mechanisms involved in the relaxation induced by 17ß-estradiol and progesterone in the canine basilar and internal carotid arteries that play a key role in cerebral circulation. Thus, relaxant effects of progesterone and 17ß-estradiol on KCl- and/or PGF2α-pre-contracted arterial rings were investigated in absence or presence of several antagonists/inhibitors/blockers; the effect on the contractile responses to CaCl2 was also determined. In both arteries progesterone (5.6-180 µM) and 17ß-estradiol (1.8-180 µM): (1) produced concentration-dependent relaxations of KCl- or PGF2α-pre-contracted arterial rings; (2) the relaxations were unaffected by actinomycin D (10 µM), cycloheximide (10 µM), SQ 22,536 (100 µM) or ODQ (30 µM), potassium channel blockers and ICI 182,780 (only for 17ß-estradiol). In the basilar artery the vasorelaxation induced by 17ß-estradiol was slightly blocked by tetraethylammonium (10mM) and glibenclamide (KATP; 10 µM). In both arteries, progesterone (10-100 µM), 17ß-estradiol (3.1-31 µM) and nifedipine (0.01-1 µM) produced a concentration-dependent blockade of the contraction to CaCl2 (10 µM-10mM). These results suggest that progesterone and 17ß-estradiol produced relaxation in the basilar and internal carotid arteries by blockade of L-type voltage dependent Ca(2+) channel but not by genomic mechanisms or production of cAMP/cGMP. Potassium channels did not play a role in the relaxation to progesterone in both arteries or in the effect of 17ß-estradiol in the internal carotid artery; meanwhile KATP channels play a minor role on the effect of 17ß-estradiol in the basilar artery.


Subject(s)
Calcium Channels/metabolism , Estradiol/administration & dosage , Progesterone/administration & dosage , Vasodilation/drug effects , Animals , Basilar Artery/drug effects , Basilar Artery/physiology , Carotid Artery, Internal/drug effects , Carotid Artery, Internal/physiology , Humans , Organ Culture Techniques , Potassium Channels/metabolism , Signal Transduction/drug effects , Vasodilation/physiology
15.
Steroids ; 76(4): 409-15, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21192961

ABSTRACT

Testosterone induces vasorelaxation through non-genomic mechanisms in several isolated blood vessels, but no study has reported its effects on the canine basilar artery, an important artery implicated in cerebral vasospasm. Hence, this study has investigated the mechanisms involved in testosterone-induced relaxation of the canine basilar artery. For this purpose, the vasorelaxant effects of testosterone were evaluated in KCl- and/or PGF(2α)-precontracted arterial rings in vitro in the absence or presence of several antagonists/inhibitors/blockers; the effect of testosterone on the contractile responses to CaCl2 was also determined. Testosterone (10-180 µM) produced concentration-dependent relaxations of KCl- or PGF(2α)-precontracted arterial rings which were: (i) unaffected by flutamide (10 µM), DL-aminoglutethimide (10 µM), actinomycin D (10 µM), cycloheximide (10 µM), SQ 22,536 (100 µM) or ODQ (30 µM); and (ii) significantly attenuated by the blockers 4-aminopyridine (K(V); 1 mM), BaCl2 (K(IR); 30 µM), iberiotoxin (BK(Ca²+); 20 nM), but not by glybenclamide (K(ATP); 10 µM). In addition, testosterone (31, 56 and 180 µM) and nifedipine (0.01-1 µM) produced a concentration-dependent blockade of the contraction to CaCl2 (10 µM to 10 mM) in arterial rings depolarized by 60mM KCl. These results, taken together, show that testosterone relaxes the canine basilar artery mainly by blockade of voltage-dependent Ca²+ channels and, to a lesser extent, by activation of K+ channels (K(IR), K(V) and BK(Ca²+)). This effect does not involve genomic mechanisms, production of cAMP/cGMP or the conversion of testosterone to 17ß-estradiol.


Subject(s)
Basilar Artery/drug effects , Calcium Channels/metabolism , Potassium Channels/metabolism , Testosterone/pharmacology , Vasodilation , Vasodilator Agents/pharmacology , 4-Aminopyridine/pharmacology , Adenine/analogs & derivatives , Adenine/pharmacology , Aminoglutethimide/pharmacology , Androgen Receptor Antagonists/pharmacology , Animals , Aromatase Inhibitors/pharmacology , Barium Compounds/pharmacology , Basilar Artery/physiology , Calcium Channel Blockers/pharmacology , Chlorides/pharmacology , Cycloheximide/pharmacology , Dactinomycin/pharmacology , Dogs , Enzyme Inhibitors/pharmacology , Flutamide/pharmacology , In Vitro Techniques , Male , Nifedipine/pharmacology , Nucleic Acid Synthesis Inhibitors/pharmacology , Oxadiazoles/pharmacology , Potassium Channel Blockers/pharmacology , Protein Synthesis Inhibitors/pharmacology , Quinoxalines/pharmacology
16.
Arch. cardiol. Méx ; 79(supl.2): 83-94, dic. 2009. tab
Article in Spanish | LILACS | ID: lil-565558

ABSTRACT

Serotonin (5-hydroxytryptamine; 5-HT) has been shown to produce vascular sympatho-inhibition in a wide variety of isolated blood vessels by activation of prejunctional 5-HT1 receptors. After considering the mechanisms involved in modulating neuroeffector transmission, the present review analyzes the experimental findings identifying the pharmacological profile of the 5-HT receptors that inhibit the sympathetically-induced vasopressor responses in pithed rats. Thus, 5-HT-induced sympatho-inhibition has been shown to be: (i) unaffected by physiological saline or by the selective antagonists ritanserin (5-HT2), MDL72222 (5-HT3) or tropisetron (5-HT3/4); (ii) blocked by methysergide, a non-selective 5-HT1/2 receptor antagonist; and (iii) potently mimicked by 5-carboxamidotryptamine (5-CT), a non-selective 5-HT1 receptor agonist, as well as by the selective agonists 8-OH-DPAT (5-HT1A), indorenate (5-HT1A), CP93,129 (5-HT1B), and sumatriptan (5-HT1B/1D). These findings show the involvement of prejunctional 5-HT1 receptors. With the use of selective antagonists, it has been shown subsequently that the sympatho-inhibition induced by indorenate, CP93, 129, and sumatriptan was selectively antagonized by WAY100635 (5-HT1A), cyanopindolol (5-HT1A/1B), and GR127935 (5-HT1B/1D), respectively. These results demonstrate that the 5-HT1 receptors mediating sympatho-inhibition on the systemic vasculature of pithed rats resemble the pharmacological profile of the 5-HT1A, 5-HT1B, and 5-HT1D subtypes.


Subject(s)
Animals , Rats , Blood Vessels/physiology , Receptors, Serotonin/physiology , Decerebrate State , Receptors, Serotonin , Sympathetic Nervous System/physiology
17.
Eur J Pharmacol ; 616(1-3): 175-82, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19527708

ABSTRACT

This study analysed the inhibition produced by the agonists moxonidine (imidazoline I(1) receptors>alpha(2)-adrenoceptors) and agmatine (endogenous ligand of imidazoline I(1)/I(2) receptors), using B-HT 933 (6-ethyl-5,6,7,8-tetrahydro-4H-oxazolo[4,5-d]azepin-2-amine dihydrochloride; alpha(2)-adrenoceptors) for comparison, on the rat cardioaccelerator sympathetic outflow. Male Wistar rats were pithed and prepared to stimulate the cardiac sympathetic outflow or to receive i.v. bolus of exogenous noradrenaline. Sympathetic stimulation or noradrenaline produced, respectively, frequency-dependent and dose-dependent tachycardic responses. I.v. continuous infusions of moxonidine (3 and 10 microg/kg min), agmatine (1000 and 3000 microg/kg min) and B-HT 933 (30 and 100 microg/kg min) inhibited the tachycardic responses to sympathetic stimulation, but not those to noradrenaline. The cardiac sympatho-inhibition by either moxonidine (3 microg/kg min) or B-HT 933 (30 microg/kg min) was not modified by i.v. injections of saline or the antagonists AGN192403 [(+/-)-2-endo-Amino-3-exo-isopropylbicyclo[2.2.1]heptane hydrochloride; 3000microg/kg; imidazoline I(1) receptors] or BU224 (2-(4,5-dihydroimidazol-2-yl)quinoline hydrochloride; 300 microg/kg; imidazoline I(2) receptors) and abolished by rauwolscine (300 microg/kg; alpha(2)-adrenoceptors). At the same doses of these compounds, the sympatho-inhibition to moxonidine (10 microg/kg min) and agmatine (1000 microg/kg min) was: (1) not modified by saline, AGN192403 or BU224; (2) partially blocked by rauwolscine or the combination of rauwolscine plus BU224; and (3) abolished by the combination of rauwolscine plus AGN192403. These results demonstrate that the cardiac sympatho-inhibition to: (1) 3 microg/kg min moxonidine or 30 microg/kg min B-HT 933 involves alpha(2)-adrenoceptors; and (2) 10 microg/kg min moxonidine or 1000 microg/kg min agmatine involves alpha(2)-adrenoceptors and imidazoline I(1) receptors.


Subject(s)
Agmatine/pharmacology , Brain/surgery , Heart Rate/drug effects , Imidazoles/pharmacology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Adrenergic alpha-2 Receptor Agonists , Animals , Azepines/pharmacology , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/pharmacology , Electric Stimulation , Heptanes/administration & dosage , Heptanes/pharmacology , Imidazoles/administration & dosage , Infusions, Intravenous , Male , Norepinephrine/administration & dosage , Norepinephrine/pharmacology , Rats , Rats, Wistar , Sodium Chloride/administration & dosage , Sodium Chloride/pharmacology , Substrate Specificity , Sympathetic Nervous System/physiopathology , Tachycardia/physiopathology , Time Factors , Yohimbine/administration & dosage , Yohimbine/pharmacology
18.
Eur J Pharmacol ; 612(1-3): 80-6, 2009 Jun 10.
Article in English | MEDLINE | ID: mdl-19356724

ABSTRACT

The present study set out to analyse the pharmacological profile of the inhibitory responses induced by the antimigraine agents dihydroergotamine (DHE) and methysergide on the tachycardic responses to preganglionic sympathetic stimulation in pithed rats. For this purpose, 132 male Wistar normotensive rats were pithed and prepared to: (i) selectively stimulate the preganglionic (C(7)-T(1)) cardiac sympathetic outflow; or (ii) receive intravenous (i.v.) bolus injections of exogenous noradrenaline. Electrical sympathetic stimulation or exogenous noradrenaline produced, respectively, frequency-dependent and dose-dependent tachycardic responses. Moreover, i.v. continuous infusions of DHE (1.8, 3.1 and 5.6 microg/kg x min) or methysergide (100, 300 and 1000 microg/kg x min) dose-dependently inhibited the tachycardic responses to sympathetic stimulation, but not those to exogenous noradrenaline. Using physiological saline or antagonists (given as i.v. bolus injections), the cardiac sympatho-inhibition induced by either DHE (3.1 microg/kg x min) or methysergide (300 microg/kg x min) was: (1) unaffected by saline (1 ml/kg); (2) partially blocked by the antagonists rauwolscine (300 microg/kg; alpha(2)) or N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1,-biphenyl]-4-carboxamide hydrochloride monohydrate (GR127935, 300 microg/kg; 5-HT(1B/1D)); and (3) completely antagonised by the combination rauwolscine plus GR127935. These antagonists, at doses high enough to completely block their respective receptors, failed to modify the sympathetically-induced tachycardic responses per se. The above results, taken together, suggest that the cardiac sympatho-inhibition induced by DHE (3.1 microg/kg x min) and methysergide (300 microg/kg x min) may be mainly mediated by stimulation of both alpha(2)-adrenoceptors and 5-HT(1B/1D) receptors.


Subject(s)
Decerebrate State/physiopathology , Dihydroergotamine/pharmacology , Methysergide/pharmacology , Serotonin Antagonists/pharmacology , Sympathetic Nervous System/drug effects , Adrenergic alpha-2 Receptor Antagonists , Animals , Blood Pressure/drug effects , Dose-Response Relationship, Drug , Drug Combinations , Electric Stimulation , Heart Rate/drug effects , Hemodynamics/drug effects , Male , Norepinephrine/pharmacology , Oxadiazoles/pharmacology , Piperazines/pharmacology , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1B/drug effects , Receptor, Serotonin, 5-HT1B/physiology , Receptors, Adrenergic, alpha-2/physiology , Sympathetic Nervous System/physiology , Tachycardia/drug therapy , Tachycardia/physiopathology , Yohimbine/pharmacology
19.
Naunyn Schmiedebergs Arch Pharmacol ; 379(2): 137-48, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18779954

ABSTRACT

Ergotamine inhibits the sympathetically-induced tachycardia in pithed rats. The present study identified the pharmacological profile of this response. Male Wistar rats were pithed and prepared to stimulate the preganglionic (C(7)-T(1)) cardiac sympathetic outflow. Intravenous continuous infusions of ergotamine dose-dependently inhibited the tachycardic responses to sympathetic stimulation, but not those to exogenous noradrenaline. Using several antagonists, the sympatho-inhibition to ergotamine was: (1) partially blocked by rauwolscine (alpha(2)), haloperidol (D(1/2)-like) or rauwolscine plus GR127935 (5-HT(1B/1D)); (2) abolished by rauwolscine plus haloperidol; and (3) unaffected by either saline or GR127935. In animals systematically pretreated with haloperidol, this sympatho-inhibition was: (1) unaffected by BRL44408 (alpha(2A)), partially antagonized by MK912 (alpha(2C)); and (3) abolished by BRL44408 plus MK912. These antagonists failed to modify the sympathetically induced tachycardic responses per se. Thus, the cardiac sympatho-inhibition by ergotamine may be mainly mediated by alpha(2A)/alpha(2C)-adrenoceptors, D(2)-like receptors and, to a lesser extent, by 5-HT(1B/1D) receptors.


Subject(s)
Adrenergic alpha-Agonists/pharmacology , Ergotamine/pharmacology , Sympathetic Nervous System/physiopathology , Adrenergic alpha-2 Receptor Agonists , Adrenergic alpha-2 Receptor Antagonists , Adrenergic alpha-Agonists/administration & dosage , Animals , Decerebrate State , Dopamine D2 Receptor Antagonists , Dose-Response Relationship, Drug , Electric Stimulation , Ergotamine/administration & dosage , Infusions, Intravenous , Male , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1B/physiology , Receptor, Serotonin, 5-HT1D/physiology , Receptors, Adrenergic, alpha-2/physiology , Receptors, Dopamine D2/physiology , Tachycardia/physiopathology
20.
Life Sci ; 84(5-6): 125-31, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19041880

ABSTRACT

AIMS: This study analyzed in pithed rats the effect of several acute and prophylactic antimigraine drugs on the CGRPergic vasodepressor sensory outflow, in an attempt to investigate systemic cardiovascular effects in a model unrelated to migraine. MAIN METHODS: Male Wistar pithed rats were pretreated with continuous i.v. infusions of hexamethonium (2 microg/kg.min; to block autonomic outflow) and methoxamine (15-20 microg/kg.min; to maintain diastolic blood pressure at around 130 mmHg). Under these conditions, the effect of both electrical stimulation (0.56-5.6 Hz; 50 V and 2 ms) of the spinal cord (T(9)-T(12)) or i.v. bolus injections of exogenous alpha-CGRP (0.1-1 microg/kg) were studied in animals pretreated with continuous i.v. infusions of sumatriptan (1-100 microg/kg.min), ergotamine (0.18-0.56 microg/kg.min), dihydroergotamine (1-10 microg/kg.min), magnesium valproate (1000-1800 microg/kg.min), propranolol (100-300 microg/kg.min) or their respective vehicles. KEY FINDINGS: Electrical stimulation of the spinal cord and i.v. bolus injections of exogenous alpha-CGRP resulted in, respectively, frequency- and dose-dependent decreases in diastolic blood pressure without affecting heart rate. Moreover, the infusions of sumatriptan, ergotamine and dihydroergotamine, but not of magnesium valproate, propranolol or their respective vehicles, dose-dependently inhibited the vasodepressor responses to electrical stimulation. In contrast, sumatriptan (10 microg/kg.min), ergotamine (0.31 microg/kg.min) and dihydroergotamine (3 microg/kg.min) failed to inhibit the vasodepressor responses to exogenous alpha-CGRP. SIGNIFICANCE: The above findings suggest that the acute (rather than the prophylactic) antimigraine drugs attenuate the vasodepressor sensory outflow mainly by prejunctional mechanisms. This may be of particular relevance when considering potential cardiovascular adverse effects by acute antimigraine drugs.


Subject(s)
Analgesics/adverse effects , Calcitonin Gene-Related Peptide/physiology , Cardiovascular System/drug effects , Hemodynamics/drug effects , Migraine Disorders/prevention & control , Sympathetic Nervous System/drug effects , Analgesics/administration & dosage , Analgesics/pharmacology , Animals , Calcitonin Gene-Related Peptide/pharmacology , Cardiovascular System/innervation , Decerebrate State , Dose-Response Relationship, Drug , Electric Stimulation , Hemodynamics/physiology , Male , Migraine Disorders/drug therapy , Rats , Rats, Wistar , Vasomotor System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...