Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Cell Biol ; 25(12): 1848-1859, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957324

ABSTRACT

Breast cancer brain metastasis (BCBM) is a lethal disease with no effective treatments. Prior work has shown that brain cancers and metastases are densely infiltrated with anti-inflammatory, protumourigenic tumour-associated macrophages, but the role of brain-resident microglia remains controversial because they are challenging to discriminate from other tumour-associated macrophages. Using single-cell RNA sequencing, genetic and humanized mouse models, we specifically identify microglia and find that they play a distinct pro-inflammatory and tumour-suppressive role in BCBM. Animals lacking microglia show increased metastasis, decreased survival and reduced natural killer and T cell responses, showing that microglia are critical to promote anti-tumour immunity to suppress BCBM. We find that the pro-inflammatory response is conserved in human microglia, and markers of their response are associated with better prognosis in patients with BCBM. These findings establish an important role for microglia in anti-tumour immunity and highlight them as a potential immunotherapy target for brain metastasis.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Mice , Animals , Humans , Female , Microglia , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Brain Neoplasms/pathology , Brain/pathology , Treatment Outcome
2.
J Neuroinflammation ; 20(1): 242, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865779

ABSTRACT

Microglia, the primary immune cells of the central nervous system (CNS), are derived from the yolk sac and populate the brain during development. Once microglia migrate to the CNS, they are self-renewing and require CSF1R signaling for their maintenance. Pexidartinib (PLX3397, PLX), a small molecule inhibitor of the CSF1R, has been shown to effectively deplete microglia since microglial maintenance is CSF1R-dependent. There have, however, been several conflicting reports that have shown the potential off-target effects of PLX on peripheral immune cells particularly those of lymphoid origin. Given this controversy in the use of the PLX family of drugs, it has become important to ascertain to what extent PLX affects the peripheral immune profile in lymphoid (spleen, and bone marrow) and non-lymphoid (kidney, lungs, and heart) organs. PLX3397 chow treatment at 660 mg/kg for 7 days significantly reduced CD45+ macrophages, CX3CR1-GFP cells, CD11b+CD45intermediate cells, and P2RY12 expression in the brain. However, there were minimal effects on peripheral immune cells from both lymphoid and non-lymphoid organs except in the heart where there was a significant decrease in CD3+ cells, inflammatory and patrolling monocytes, and CD11b+Ly6G+ neutrophils. We then stimulated the immune system with 1 mg/kg of LPS which resulted in a significant reduction in the number of innate immune cells. In this context, PLX did not alter the cytokine profile in the serum and the brain of naïve mice but did so in the LPS-stimulated group resulting in a significant reduction in TNFα, IL-1α, IFN-γ and IL-1ß. Furthermore, PLX did not alter locomotor activity in the open field test suggesting that microglia do not contribute to LPS-induced sickness behavior. Our results provide an assessment of immune cell populations with PLX3397 treatment on brain, lymphoid and non-lymphoid organs without and during LPS treatment that can serve as a resource for understanding consequences of such approaches.


Subject(s)
Lipopolysaccharides , Microglia , Mice , Animals , Microglia/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Macrophages , Aminopyridines/pharmacology , Receptors, Colony-Stimulating Factor/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
4.
Immunol Rev ; 311(1): 26-38, 2022 10.
Article in English | MEDLINE | ID: mdl-35880587

ABSTRACT

The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.


Subject(s)
Brain , Myeloid Cells , Aging , Brain/blood supply , Humans
5.
Cell Rep ; 39(11): 110961, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35705056

ABSTRACT

Microglia are strongly implicated in the development and progression of Alzheimer's disease (AD), yet their impact on pathology and lifespan remains unclear. Here we utilize a CSF1R hypomorphic mouse to generate a model of AD that genetically lacks microglia. The resulting microglial-deficient mice exhibit a profound shift from parenchymal amyloid plaques to cerebral amyloid angiopathy (CAA), which is accompanied by numerous transcriptional changes, greatly increased brain calcification and hemorrhages, and premature lethality. Remarkably, a single injection of wild-type microglia into adult mice repopulates the microglial niche and prevents each of these pathological changes. Taken together, these results indicate the protective functions of microglia in reducing CAA, blood-brain barrier dysfunction, and brain calcification. To further understand the clinical implications of these findings, human AD tissue and iPSC-microglia were examined, providing evidence that microglia phagocytose calcium crystals, and this process is impaired by loss of the AD risk gene, TREM2.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Microglia , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/pathology , Disease Models, Animal , Humans , Induced Pluripotent Stem Cells , Membrane Glycoproteins , Mice , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid/pathology , Receptors, Immunologic
6.
Alzheimers Dement ; 18(10): 1765-1778, 2022 10.
Article in English | MEDLINE | ID: mdl-35142046

ABSTRACT

The P522R variant of PLCG2, expressed by microglia, is associated with reduced risk of Alzheimer's disease (AD). Yet, the impact of this protective mutation on microglial responses to AD pathology remains unknown. Chimeric AD and wild-type mice were generated by transplanting PLCG2-P522R or isogenic wild-type human induced pluripotent stem cell microglia. At 7 months of age, single-cell and bulk RNA sequencing, and histological analyses were performed. The PLCG2-P522R variant induced a significant increase in microglial human leukocyte antigen (HLA) expression and the induction of antigen presentation, chemokine signaling, and T cell proliferation pathways. Examination of immune-intact AD mice further demonstrated that the PLCG2-P522R variant promotes the recruitment of CD8+ T cells to the brain. These data provide the first evidence that the PLCG2-P522R variant increases the capacity of microglia to recruit T cells and present antigens, promoting a microglial transcriptional state that has recently been shown to be reduced in AD patient brains.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Animals , Humans , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Antigen Presentation , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Chemokines/metabolism , Disease Models, Animal , Induced Pluripotent Stem Cells/metabolism , Mice, Transgenic , Microglia/metabolism
7.
Nat Commun ; 11(1): 5370, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097708

ABSTRACT

The discovery of TREM2 as a myeloid-specific Alzheimer's disease (AD) risk gene has accelerated research into the role of microglia in AD. While TREM2 mouse models have provided critical insight, the normal and disease-associated functions of TREM2 in human microglia remain unclear. To examine this question, we profile microglia differentiated from isogenic, CRISPR-modified TREM2-knockout induced pluripotent stem cell (iPSC) lines. By combining transcriptomic and functional analyses with a chimeric AD mouse model, we find that TREM2 deletion reduces microglial survival, impairs phagocytosis of key substrates including APOE, and inhibits SDF-1α/CXCR4-mediated chemotaxis, culminating in an impaired response to beta-amyloid plaques in vivo. Single-cell sequencing of xenotransplanted human microglia further highlights a loss of disease-associated microglial (DAM) responses in human TREM2 knockout microglia that we validate by flow cytometry and immunohistochemistry. Taken together, these studies reveal both conserved and novel aspects of human TREM2 biology that likely play critical roles in the development and progression of AD.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Gene Expression Regulation , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microglia/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Cell Death , Cell Line , Chemokine CXCL12/metabolism , Chemotaxis , Disease Models, Animal , Female , Gene Knockout Techniques , Genetic Predisposition to Disease/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Phagocytosis , Plaque, Amyloid/metabolism , Receptors, CXCR4/metabolism , Transcriptome
8.
Alzheimers Res Ther ; 11(1): 107, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31847886

ABSTRACT

BACKGROUND: Alzheimer disease (AD) is characterized by the accumulation of beta-amyloid (Aß) plaques and neurofibrillary tangles composed of hyperphosphorylated tau, which together lead to neurodegeneration and cognitive decline. Current therapeutic approaches have primarily aimed to reduce pathological aggregates of either Aß or tau, yet phase 3 clinical trials of these approaches have thus far failed to delay disease progression in humans. Strong preclinical evidence indicates that these two abnormally aggregated proteins interact synergistically to drive downstream neurodegeneration. Therefore, combinatorial therapies that concurrently target both Aß and tau might be needed for effective disease modification. METHODS: A combinatorial vaccination approach was designed to concurrently target both Aß and tau pathologies. Tau22/5xFAD (T5x) bigenic mice that develop both pathological Aß and tau aggregates were injected intramuscularly with a mixture of two MultiTEP epitope vaccines: AV-1959R and AV-1980R, targeting Aß and tau, respectively, and formulated in AdvaxCpG, a potent polysaccharide adjuvant. Antibody responses of vaccinated animals were measured by ELISA, and neuropathological changes were determined in brain homogenates of vaccinated and control mice using ELISA and Meso Scale Discovery (MSD) multiplex assays. RESULTS: T5x mice immunized with a mixture of Aß- and tau-targeting vaccines generated high Aß- and tau-specific antibody titers that recognized senile plaques and neurofibrillary tangles/neuropil threads in human AD brain sections. Production of these antibodies in turn led to significant reductions in the levels of soluble and insoluble total tau, and hyperphosphorylated tau as well as insoluble Aß42, within the brains of bigenic T5x mice. CONCLUSIONS: AV-1959R and AV-1980R formulated with AdvaxCpG adjuvant are immunogenic and therapeutically potent vaccines that in combination can effectively reduce both of the hallmark pathologies of AD in bigenic mice. Taken together, these findings warrant further development of this vaccine technology for ultimate testing in human AD.


Subject(s)
Alzheimer Disease/therapy , Alzheimer Vaccines , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology
9.
Sci Rep ; 9(1): 15455, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664089

ABSTRACT

Pathological tau correlates well with cognitive impairments in Alzheimer's disease (AD) patients and therefore represents a promising target for immunotherapy. Targeting an appropriate B cell epitope in pathological tau could in theory produce an effective reduction of pathology without disrupting the function of normal native tau. Recent data demonstrate that the N-terminal region of tau (aa 2-18), termed the "phosphatase activation domain (PAD)", is hidden within native Tau in a 'paperclip'-like conformation. Conversely, PAD is exposed in pathological tau and plays an essential role in the inhibition of fast axonal transport and tau polymerization. Thus, we hypothesized that anti-tau2-18 antibodies may safely and specifically reduce pathological tau and prevent further aggregation, which in turn would neutralize tau toxicity. Therefore, we evaluated the immunogenicity and therapeutic efficacy of our MultiTEP platform-based vaccine targeting tau2-18 formulated with AdvaxCpG adjuvant (AV-1980R/A) in PS19 tau transgenic mice. The AV-1980R/A induced extremely high antibody responses and the resulting sera recognized neurofibrillary tangles and plaque-associated dystrophic neurites in AD brain sections. In addition, under non-denaturing conditions AV-1980R/A sera preferentially recognized AD-associated tau. Importantly, vaccination also prevented age-related motor and cognitive deficits in PS19 mice and significantly reduced insoluble total and phosphorylated tau species. Taken together, these findings suggest that predominantly targeting misfolded tau with AV-1980R/A could represent an effective strategy for AD immunotherapy.


Subject(s)
Epitopes/immunology , Phosphoric Monoester Hydrolases/metabolism , Vaccines/immunology , tau Proteins/immunology , Animals , Antibody Formation , Immunotherapy , Mice , Neurofibrillary Tangles/immunology , Phosphorylation , tau Proteins/chemistry
10.
Neuron ; 103(6): 1016-1033.e10, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31375314

ABSTRACT

iPSC-derived microglia offer a powerful tool to study microglial homeostasis and disease-associated inflammatory responses. Yet, microglia are highly sensitive to their environment, exhibiting transcriptomic deficiencies when kept in isolation from the brain. Furthermore, species-specific genetic variations demonstrate that rodent microglia fail to fully recapitulate the human condition. To address this, we developed an approach to study human microglia within a surrogate brain environment. Transplantation of iPSC-derived hematopoietic-progenitors into the postnatal brain of humanized, immune-deficient mice results in context-dependent differentiation into microglia and other CNS macrophages, acquisition of an ex vivo human microglial gene signature, and responsiveness to both acute and chronic insults. Most notably, transplanted microglia exhibit robust transcriptional responses to Aß-plaques that only partially overlap with that of murine microglia, revealing new, human-specific Aß-responsive genes. We therefore have demonstrated that this chimeric model provides a powerful new system to examine the in vivo function of patient-derived and genetically modified microglia.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cell Differentiation , Gene Expression , Microglia/metabolism , Plaque, Amyloid/genetics , Transplantation Chimera , Animals , Brain/cytology , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Hematopoietic Stem Cell Transplantation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Macrophage Colony-Stimulating Factor/genetics , Mice , Mice, Transgenic , Microglia/cytology , Thrombopoietin/genetics
11.
Mol Neurodegener ; 13(1): 67, 2018 12 22.
Article in English | MEDLINE | ID: mdl-30577865

ABSTRACT

BACKGROUND: Microglia, the principle immune cells of the brain, play important roles in neuronal development, homeostatic function and neurodegenerative disease. Recent genetic studies have further highlighted the importance of microglia in neurodegeneration with the identification of disease risk polymorphisms in many microglial genes. To better understand the role of these genes in microglial biology and disease, we, and others, have developed methods to differentiate microglia from human induced pluripotent stem cells (iPSCs). While the development of these methods has begun to enable important new studies of microglial biology, labs with little prior stem cell experience have sometimes found it challenging to adopt these complex protocols. Therefore, we have now developed a greatly simplified approach to generate large numbers of highly pure human microglia. RESULTS: iPSCs are first differentiated toward a mesodermal, hematopoietic lineage using commercially available media. Highly pure populations of non-adherent CD43+ hematopoietic progenitors are then simply transferred to media that includes three key cytokines (M-CSF, IL-34, and TGFß-1) that promote differentiation of homeostatic microglia. This updated approach avoids the prior requirement for hypoxic incubation, complex media formulation, FACS sorting, or co-culture, thereby significantly simplifying human microglial generation. To confirm that the resulting cells are equivalent to previously developed iPSC-microglia, we performed RNA-sequencing, functional testing, and transplantation studies. Our findings reveal that microglia generated via this simplified method are virtually identical to iPS-microglia produced via our previously published approach. To also determine whether a small molecule activator of TGFß signaling (IDE1) can be used to replace recombinant TGFß1, further reducing costs, we examined growth kinetics and the transcriptome of cells differentiated with IDE1. These data demonstrate that a microglial cell can indeed be produced using this alternative approach, although transcriptional differences do occur that should be considered. CONCLUSION: We anticipate that this new and greatly simplified protocol will enable many interested labs, including those with little prior stem cell or flow cytometry experience, to generate and study human iPS-microglia. By combining this method with other advances such as CRISPR-gene editing and xenotransplantation, the field will continue to improve our understanding of microglial biology and their important roles in human development, homeostasis, and disease.


Subject(s)
Brain/metabolism , Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Microglia/metabolism , Pluripotent Stem Cells/cytology , Animals , Cytokines/metabolism , Humans
12.
Neurotoxicology ; 65: 231-240, 2018 03.
Article in English | MEDLINE | ID: mdl-29104007

ABSTRACT

Exposure to fine ambient particulates (PM2.5) during gestation or neonatally has potent neurotoxic effects. While biological and behavioral data indicate a vulnerability to environmental pollutants across distinct neurodevelopmental windows, the behavioral consequences following exposure across the entire developmental period remain unknown. Moreover, several epidemiological studies support a link between developmental exposure to air pollution and an increased risk of later receiving a diagnosis of autism spectrum disorders (ASD), a neurodevelopmental disorder that persists throughout life. In the current study we sought to determine whether perinatal exposure to PM2.5 would reduce sociability and increase repetitive deficits in mice, two hallmark characteristics of ASD. Pregnant female B6C3F1 mice were exposed daily to concentrated ambient PM2.5 (CAPs) (135.8µg/m3) or filtered air (3.1µg/m3) throughout gestation followed by additional exposures to both dams and their litters from days 2-10 postpartum. Adult offspring were subsequently assessed for social and repetitive behaviors at 20 weeks of age. Daily perinatal exposure to CAPs significantly decreased sociability in male and female mice as measured by the social approach task; however, reductions in reciprocal social interaction and increased grooming behavior were only present in male offspring exposed to CAPs. These findings demonstrate that exposure to particulate air pollutants throughout early neurodevelopment induces long lasting behavioral deficits in a sex-dependent manner and may be an underlying cause of neurodevelopmental disorders such as ASD.


Subject(s)
Autistic Disorder/chemically induced , Autistic Disorder/psychology , Grooming , Maternal Exposure , Particulate Matter/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/psychology , Social Behavior , Animals , Female , Male , Mice , Particle Size , Pregnancy
13.
Brain Behav Immun ; 63: 99-107, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27622677

ABSTRACT

Recent population-based studies of expecting mothers identified a unique profile of immune markers that are associated with an increased risk of having a child diagnosed with autism spectrum disorder (ASD). This immune profile, including increased levels of maternal and placental interleukin (IL)-4 and IL-5, is consistent with an immune response found in an allergic-asthma phenotype. Allergies and asthma reflect an imbalance in immune responses including polarization towards T-helper type 2 (TH2) responses, with both genetic susceptibility and environmental factors affecting this T-cell polarization. Mouse strains provide a known and controlled source of genetic diversity to explore the role of genetic predisposition on environmental factors. In particular, the FVB background exhibits a skew towards TH2-mediated allergic-asthma response in traditional models of asthma whereas the C57 strain exhibits a more blunted TH2 polarized phenotype resulting in an attenuated allergic-asthma response. C57BL/6J (C57) and the sighted FVB.129P2-Pde6b(+) Tyr(c-ch)/Ant (FVB/Ant) lines were selected based on their characteristic high sociability and differing sensitivity to TH2-mediated stimuli. Based on the distinct allergy-sensitive immune responses of these two strains, we hypothesized that unique developmental consequences would occur in offspring following maternal allergy-asthma exposure. Female C57 and FVB/Ant dams were primed/sensitized with an exposure to ovalbumin (OVA) before pregnancy, then exposed to either aerosolized OVA or PBS-vehicle throughout gestation. Sera from pregnant dams were analyzed for changes in cytokine profiles using multiplex-arrays and offspring were assessed for changes in autism-like behavioral responses. Analysis of maternal sera revealed elevated IL-4 and IL-5 in OVA-treated dams of both strains but only C57 mice expressed increased levels of IL-1ß, IL-6, TNFα, and IL-17. Behavioral assessments revealed strain-dependent changes in juvenile reciprocal social interaction in offspring of maternal allergic asthma dams. Moreover, mice of both strains showed decreased repetitive grooming and increased marble burying behavior when born to OVA-exposed dams. Together, these findings support the important role genetic predisposition plays in the effects of maternal immune activation and underscore differences in ASD-like behavioral outcomes across mouse strains.


Subject(s)
Asthma/genetics , Asthma/immunology , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/immunology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cytokines/immunology , Disease Models, Animal , Female , Gene-Environment Interaction , Male , Maternal Exposure/adverse effects , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Pregnancy , Prenatal Exposure Delayed Effects/immunology , Th2 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...