Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732868

ABSTRACT

This paper presents the design, development, and validation of a novel e-textile leg sleeve for non-invasive Surface Electromyography (sEMG) monitoring. This wearable device incorporates e-textile sensors for sEMG signal acquisition from the lower limb muscles, specifically the anterior tibialis and lateral gastrocnemius. Validation was conducted by performing a comparative study with eleven healthy volunteers to evaluate the performance of the e-textile sleeve in acquiring sEMG signals compared to traditional Ag/AgCl electrodes. The results demonstrated strong agreement between the e-textile and conventional methods in measuring descriptive metrics of the signals, including area, power, mean, and root mean square. The paired data t-test did not reveal any statistically significant differences, and the Bland-Altman analysis indicated negligible bias between the measures recorded using the two methods. In addition, this study evaluated the wearability and comfort of the e-textile sleeve using the Comfort Rating Scale (CRS). Overall, the scores confirmed that the proposed device is highly wearable and comfortable, highlighting its suitability for everyday use in patient care.


Subject(s)
Electrodes , Electromyography , Textiles , Wearable Electronic Devices , Humans , Electromyography/methods , Electromyography/instrumentation , Male , Adult , Female , Muscle, Skeletal/physiology , Leg/physiology
2.
Sensors (Basel) ; 24(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474980

ABSTRACT

This study investigates the biomechanical impact of a passive Arm-Support Exoskeleton (ASE) on workers in wool textile processing. Eight workers, equipped with surface electrodes for electromyography (EMG) recording, performed three industrial tasks, with and without the exoskeleton. All tasks were performed in an upright stance involving repetitive upper limbs actions and overhead work, each presenting different physical demands in terms of cycle duration, load handling and percentage of cycle time with shoulder flexion over 80°. The use of ASE consistently lowered muscle activity in the anterior and medial deltoid compared to the free condition (reduction in signal Root Mean Square (RMS) -21.6% and -13.6%, respectively), while no difference was found for the Erector Spinae Longissimus (ESL) muscle. All workers reported complete satisfaction with the ASE effectiveness as rated on Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST), and 62% of the subjects rated the usability score as very high (>80 System Usability Scale (SUS)). The reduction in shoulder flexor muscle activity during the performance of industrial tasks is not correlated to the level of ergonomic risk involved. This preliminary study affirms the potential adoption of ASE as support for repetitive activities in wool textile processing, emphasizing its efficacy in reducing shoulder muscle activity. Positive worker acceptance and intention to use ASE supports its broader adoption as a preventive tool in the occupational sector.


Subject(s)
Exoskeleton Device , Humans , Pilot Projects , Upper Extremity/physiology , Muscle, Skeletal/physiology , Shoulder/physiology , Electromyography , Biomechanical Phenomena
3.
Stud Health Technol Inform ; 302: 962-966, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203545

ABSTRACT

Foot drop is a deficit in foot dorsiflexion causing difficulties in walking. Passive ankle-foot orthoses are external devices used to support the drop foot improving gait functions. Foot drop deficits and therapeutic effects of AFO can be highlighted using gait analysis. This study reports values of the major spatiotemporal gait parameters assessed using wearable inertial sensors on a group of 25 subjects suffering from unilateral foot drop. Collected data were used to assess the test-retest reliability by means of Intraclass Correlation Coefficient and Minimum Detectable Change. Excellent test-retest reliability was found for all the parameters in all walking conditions. The analysis of Minimum Detectable Change identified the gait phases duration and the cadence as the most appropriate parameters to detect changes or improvements in subject gait after rehabilitation or specific treatment.


Subject(s)
Gait Disorders, Neurologic , Peroneal Neuropathies , Humans , Peroneal Neuropathies/complications , Reproducibility of Results , Gait , Walking , Muscle Weakness/complications , Paresis/complications , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Biomechanical Phenomena , Ankle Joint
4.
Stud Health Technol Inform ; 302: 1029-1030, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203573

ABSTRACT

Ankle-Foot Orthoses (AFOs) are common non-surgical treatments used to support foot and ankle joint when their normal functioning is compromised. AFOs have relevant impact on gait biomechanics, while scientific literature about effects on static balance is less strong and confusing. This study aims to assess the effectiveness of a plastic semi-rigid AFO in improving static balance on foot drop patients. Results underline that no significant effects on static balance is obtained on the study population when the AFO is used on the impaired foot.


Subject(s)
Foot Orthoses , Peroneal Neuropathies , Humans , Ankle , Ankle Joint , Gait , Muscle Weakness , Paresis , Biomechanical Phenomena
5.
Brain Sci ; 12(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36358436

ABSTRACT

In this work, we aim to identify sensitive neurophysiological biomarkers of axonal degeneration in CIDP patients. A total of 16 CIDP patients, fulfilling the clinical and neurophysiological criteria for typical CIDP, treated with subcutaneous immunoglobulin (ScIg) (0.4 g/kg/week) were evaluated at baseline (before ScIg treatment) and after long-term treatment with ScIg (24 months) by clinical assessment scales, nerve conduction studies (NCS) and electromyography (EMG). Conventional and non-conventional neurophysiological parameters: motor unit potential (MUP) analysis, MUP thickness and size index (SI)] and interference pattern (IP) features were evaluated after long-term treatment (24 months) and compared with a population of 16 healthy controls (HC). An increase of distal motor latency (DML) and reduced compound motor action potential (CMAP) amplitude and area in CIDP patients suggest axonal damage of motor fibers, together with a significant increase of MUP amplitude, duration and area. Analysis of non-conventional MUP parameters shows no difference for MUP thickness; however, in CIDP patients, SI is increased and IP area and amplitude values are lower than HC. Despite clinical and neurophysiological improvement after ScIg treatment, neurophysiological analysis revealed axonal degeneration of motor fibers and motor unit remodeling. Correlation analysis shows that the axonal degeneration process is related to the diagnostic and therapeutic delay. MUP area and SI parameters can detect early signs of axonal degeneration, and their introduction in clinical practice may help to identify patients with the worst outcome.

6.
Diagnostics (Basel) ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34943500

ABSTRACT

The use of e-textile technologies spread out in the scientific research with several applications in both medical and nonmedical world. In particular, wearable technologies and miniature electronics devices were implemented and tested for medical research purposes. In this paper, a systematic review regarding the use of e-textile for clinical applications was conducted: the Scopus and Pubmed databases were investigate by considering research studies from 2010 to 2020. Overall, 262 papers were found, and 71 of them were included in the systematic review. Of the included studies, 63.4% focused on information and communication technology studies, while the other 36.6% focused on industrial bioengineering applications. Overall, 56.3% of the research was published as an article, while the remainder were conference papers. Papers included in the review were grouped by main aim into cardiological, muscular, physical medicine and orthopaedic, respiratory, and miscellaneous applications. The systematic review showed that there are several types of applications regarding e-textile in medicine and several devices were implemented as well; nevertheless, there is still a lack of validation studies on larger cohorts of subjects since the majority of the research only focuses on developing and testing the new device without considering a further extended validation.

7.
Bioengineering (Basel) ; 8(10)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34677211

ABSTRACT

Heart-rate variability has proved a valid tool in prognosis definition of patients with congestive heart failure (CHF). Previous research has documented Poincaré plot analysis as a valuable approach to study heart-rate variability performance among different subjects. In this paper, we explored the possibility to feed machine-learning (ML) algorithms using unconventional quantitative parameters extracted from Poincaré plots (generated from 24-h electrocardiogram recordings) to classify patients with CHF belonging to different New York Heart Association (NYHA) classes. We performed in sequence the following investigations: first, a statistical analysis was carried out on 9 morphological parameters, automatically measured from Poincaré plots. Subsequently, a feature selection through a wrapper with a 10-fold cross-validation method was performed to find the best subset of features which maximized the classification accuracy for each considered ML algorithm. Finally, patient classification was assessed through a ML analysis using AdaBoost of Decision Tree, k-Nearest Neighbors and Naive Bayes algorithms. A univariate statistical analysis proved 5 out of 9 parameters presented statistically significant differences among patients of distinct NYHA classes; similarly, a multivariate logistic regression confirmed the importance of the parameter ρy in the separability between low-risk and high-risk classes. The ML analysis achieved promising results in terms of evaluation metrics (especially the Naive Bayes algorithm), with accuracies greater than 80% and Area Under the Receiver Operating Curve indices greater than 0.7 for the overall three algorithms. The study indicates the proposed features have a predictive power to discriminate the NYHA classes, to which the features seem evenly correlated. Despite the NYHA classification being subjective and easily recognized by cardiologists, the potential relevance in the clinical cardiology of the proposed features and the promising ML results implies the methodology could be a valuable approach to automatically classify CHF. Future investigations on enriched datasets may further confirm the presented evidence.

8.
Math Biosci Eng ; 18(5): 6995-7009, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34517568

ABSTRACT

Parkinson's disease is the second most common neurodegenerative disorder in the world. Assumed that gait dysfunctions represent a major motor symptom for the pathology, gait analysis can provide clinicians quantitative information about the rehabilitation outcome of patients. In this scenario, wearable inertial systems for gait analysis can be a valid tool to assess the functional recovery of patients in an automatic and quantitative way, helping clinicians in decision making. Aim of the study is to evaluate the impact of the short-term rehabilitation on gait and balance of patients with Parkinson's disease. A cohort of 12 patients with Idiopathic Parkinson's disease performed a gait analysis session instrumented by a wearable inertial system for gait analysis: Opal System, by APDM Inc., with spatial and temporal parameters being analyzed through a statistic and machine learning approach. Six out of fourteen motion parameters exhibited a statistically significant difference between the measurements at admission and at discharge of the patients, while the machine learning analysis confirmed the separability of the two phases in terms of Accuracy and Area under the Receiving Operating Characteristic Curve. The rehabilitation treatment especially improved the motion parameters related to the gait. The study shows the positive impact on the gait of a short-term rehabilitation in patients with Parkinson's disease and the feasibility of the wearable inertial devices, that are increasingly spreading in clinical practice, to quantitatively assess the gait improvement.


Subject(s)
Parkinson Disease , Wearable Electronic Devices , Gait , Gait Analysis , Humans , Machine Learning , Parkinson Disease/complications
9.
Sensors (Basel) ; 21(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917206

ABSTRACT

Many activities may elicit a biomechanical overload. Among these, lifting loads can cause work-related musculoskeletal disorders. Aspiring to improve risk prevention, the National Institute for Occupational Safety and Health (NIOSH) established a methodology for assessing lifting actions by means of a quantitative method based on intensity, duration, frequency and other geometrical characteristics of lifting. In this paper, we explored the machine learning (ML) feasibility to classify biomechanical risk according to the revised NIOSH lifting equation. Acceleration and angular velocity signals were collected using a wearable sensor during lifting tasks performed by seven subjects and further segmented to extract time-domain features: root mean square, minimum, maximum and standard deviation. The features were fed to several ML algorithms. Interesting results were obtained in terms of evaluation metrics for a binary risk/no-risk classification; specifically, the tree-based algorithms reached accuracies greater than 90% and Area under the Receiver operating curve characteristics curves greater than 0.9. In conclusion, this study indicates the proposed combination of features and algorithms represents a valuable approach to automatically classify work activities in two NIOSH risk groups. These data confirm the potential of this methodology to assess the biomechanical risk to which subjects are exposed during their work activity.


Subject(s)
Lifting , Wearable Electronic Devices , Biomechanical Phenomena , Humans , Machine Learning , National Institute for Occupational Safety and Health, U.S. , Risk Assessment , United States
10.
Sensors (Basel) ; 20(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238448

ABSTRACT

This paper presents a new wearable e-textile based system, named SWEET Sock, for biomedical signals remote monitoring. The system includes a textile sensing sock, an electronic unit for data transmission, a custom-made Android application for real-time signal visualization, and a software desktop for advanced digital signal processing. The device allows the acquisition of angular velocities of the lower limbs and plantar pressure signals, which are postprocessed to have a complete and schematic overview of patient's clinical status, regarding gait and postural assessment. In this work, device performances are validated by evaluating the agreement between the prototype and an optoelectronic system for gait analysis on a set of free walk acquisitions. Results show good agreement between the systems in the assessment of gait cycle time and cadence, while the presence of systematic and proportional errors are pointed out for swing and stance time parameters. Worse results were obtained in the comparison of spatial metrics. The "wearability" of the system and its comfortable use make it suitable to be used in domestic environment for the continuous remote health monitoring of de-hospitalized patients but also in the ergonomic assessment of health workers, thanks to its low invasiveness.


Subject(s)
Clothing , Gait Analysis , Posture , Textiles , Wearable Electronic Devices , Humans , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...