Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Microbiol Infect ; 27(7): 1040.e1-1040.e6, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33775814

ABSTRACT

OBJECTIVES: To analyse the strains collected during a 1-year survey of ceftazidime-avibactam-resistant KPC-producing Klebsiella pneumoniae, in order to investigate the molecular mechanisms potentially responsible for their resistant phenotype. METHODS: Clinical KPC-producing K. pneumoniae isolates were collected from 31 patients in six different hospitals in Rome. For eight of the patients, an additional strain grown before the start of treatment was also available, bringing the total of isolates studied to 39. Antimicrobial susceptibility was determined by automated system, broth microdiluition and E-test as appropriate. In silico analysis of acquired resistance genes was achieved by whole-genome sequencing, while multilocus sequence typing and core genome multilocus sequence typing were employed for molecular typing. Mutations associated with ceftazidime-avibactam resistance were identified by Sanger sequencing of the blaKPC gene. Possible mutations in OmpK35 and OmpK36 outer membrane proteins were also investigated. RESULTS: Molecular analyses highlighted the circulation of the ST512, 101 and 307 high-risk clones; 26 of the 31 patients carried a mutated KPC variant, five had a wild-type KPC-3. Among the KPC variants detected, 11 were different mutations within the blaKPC-3 gene, four of which were novel mutational changes. CONCLUSIONS: Different mutations including single amino-acid substitutions, insertions or deletions within the blaKPC gene were found in 26/31 ceftazidime-avibactam-resistant KPC-producing K. pneumoniae strains belonging to high-risk clones circulating in Italy. Of note, in 14/31 cases the isolates displayed resistance to both ceftazidime-avibactam and carbapenems, raising concerns for the possible selection of a multidrug-resistant phenotype.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Ceftazidime/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella pneumoniae/isolation & purification , Bacterial Proteins/genetics , Carbapenem-Resistant Enterobacteriaceae/classification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Drug Combinations , Drug Resistance, Multiple, Bacterial/drug effects , Genome, Bacterial/genetics , Genotype , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Mutation , Porins/genetics , Rome/epidemiology , beta-Lactamases/genetics
2.
Metabolism ; 56(3): 413-9, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17292732

ABSTRACT

Endothelial dysfunction, insulin resistance, and elevated levels of circulating proinflammatory markers are among the earliest detectable abnormalities in people at risk for atherosclerosis. Accelerated atherosclerosis is a leading contributor to morbidity and mortality in type 2 diabetes mellitus, a complex genetic disorder. Therefore, we hypothesized that normoglycemic offspring of patients with type 2 diabetes mellitus (NOPD) may have impaired vascular and metabolic function related to an enhanced proinflammatory state. We compared NOPD (n = 51) with matched healthy control subjects without family history of diabetes (n = 35). Flow- and nitroglycerin-mediated brachial artery vasodilation were assessed by ultrasound to evaluate endothelium-dependent and -independent vascular function. Each subject also underwent an oral glucose tolerance test to evaluate metabolic function. Fasting levels of plasma adiponectin and circulating markers of inflammation (high-sensitivity C-reactive protein, CD40 ligand, interleukin 1beta, tumor necrosis factor alpha, vascular cell adhesion molecule 1, and intracellular adhesion molecule) were measured. Both NOPD and the control group had fasting glucose and insulin levels well within the reference range. However, results from oral glucose tolerance test and quantitative insulin sensitivity check index revealed that NOPD were insulin resistant with significantly impaired flow- and nitroglycerin-mediated dilation compared with the control group. Adiponectin levels were lower, whereas many circulating markers of inflammation were higher, in NOPD compared with the control group. Normoglycemic offspring of patients with type 2 diabetes mellitus have impaired vascular and metabolic function accompanied by an enhanced proinflammatory state that may contribute to their increased risk of diabetes and its vascular complications.


Subject(s)
Brachial Artery/physiopathology , Diabetes Mellitus, Type 2/metabolism , Inflammation/blood , Adult , C-Reactive Protein/analysis , Diabetes Mellitus, Type 2/physiopathology , Female , Humans , Insulin Resistance , Intercellular Adhesion Molecule-1/blood , Interleukin-1beta/blood , Male , Tumor Necrosis Factor-alpha/blood , Vascular Cell Adhesion Molecule-1/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...