Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 129(51): 16183-9, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18052251

ABSTRACT

We present a detailed study of the growth mechanism of single-walled boron nitride nanotubes synthesized by laser vaporization, which is the unique route known to the synthesis of this kind of tube in high quantities. We have performed a nanometric chemical and structural characterization by transmission electron microscopy (high-resolution mode (HRTEM) and electron energy loss spectroscopy) of the synthesis products. Different boron-based compounds and other impurities were identified in the raw synthesis products. The results obtained by the TEM analysis and from the synthesis parameters (temperature, boron, and nitrogen sources) combined with phase diagram analysis to provide identification of the fundamental factors determining the nanotube growth mechanism. Our experiments strongly support a root-growth model that involves the presence of a droplet of boron. This phenomenological model considers the solubility, solidification, and segregation phenomena of the elements present in this boron droplet. In this model, we distinguish three different steps as a function of the temperature: (1) formation of the liquid boron droplet from the decomposition of different boron compounds existing in the hexagonal boron nitride target, (2) reaction of these boron droplets with nitrogen gas present in the vaporization chamber and recombination of these elements to form boron nitride, and (3) incorporation of the nitrogen atoms at the root of the boron particle at active reacting sites that achieves the growth of the tube.

2.
Nano Lett ; 7(7): 1856-62, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17585829

ABSTRACT

We report on the synthesis of C-BN single-walled nanotubes made of BN nanodomains embedded into a graphene layer. The synthesis process consists of vaporizing, by a continuous CO2 laser, a target made of carbon and boron mixed with a Co/Ni catalyst under N2 atmosphere. High-resolution transmission electron microscopy (HRTEM) and nanoelectron energy loss spectroscopy (nanoEELS) provide direct evidence that boron and nitrogen co-segregate with respect to carbon and form nanodomains within the hexagonal lattice of the graphene layer in a sequential manner. A growth model is proposed to account for the observed C-BN self-organization and to explain how kinetics and local energetics at intermediate states can tailor ultimate single layer BN-C heterojunctions.


Subject(s)
Boron Compounds/chemistry , Lasers , Nanotubes, Carbon/chemistry , Nanotechnology , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...