Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 126(4): 583-592, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35049313

ABSTRACT

We report first-principles molecular dynamics (MD) and dipole-driven molecular dynamics (µ-DMD) simulations of the hydrogen oxalate anion at the MP2/aug-cc-pVDZ level of theory. We examine the role of vibrational coupling between the OH stretching bands, that is, the fundamental and a few combination bands spanning the 2900-3100 cm-1 range, and several of the low-frequency bending and stretching fundamental modes. The low-frequency modes between 300 and 825 cm-1 play a crucial role in the proton-transfer motion. Strong involvement of CO2 and CCO bending and the CC stretching vibrations indicate that these large amplitude motions cause the shortening of the O···O distance and thus promote H+ transfer to the other oxygen by bringing it over the 3.4 kcal/mol barrier. Analysis of resonant µ-DMD trajectories shows that the complex spectral feature near 825 cm-1, closely corresponding to both an overtone of two quanta of 425 cm-1 and a combination band of low-frequency CO2 rocking (300 cm-1) and CCO bending (575 cm-1) modes, is involved in the proton transfer. µ-DMD shows that exciting the system at these mode combinations leads to faster barrier activation than exciting at the OH fundamental mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...