Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(6-2): 065209, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37464717

ABSTRACT

Using three-dimensional (3D) magnetohydrodynamic simulations, we study how a pit on a metal surface evolves when driven by intense electrical current density j. Redistribution of j around the pit initiates a feedback loop: j both reacts to and alters the electrical conductivity σ, through Joule heating and hydrodynamic expansion, so that j and σ are constantly in flux. Thus, the pit transforms into larger striation and filament structures predicted by the electrothermal instability theory. Both structures are important in applications of current-driven metal: The striation constitutes a density perturbation that can seed the magneto-Rayleigh-Taylor instability, while the filament provides a more rapid path to plasma formation, through 3D j redistribution. Simulations predict distinctive self-emission patterns, thus allowing for experimental observation and comparison.

2.
Phys Rev Lett ; 130(25): 255101, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37418744

ABSTRACT

Electrothermal instability plays an important role in applications of current-driven metal, creating striations (which seed the magneto-Rayleigh-Taylor instability) and filaments (which provide a more rapid path to plasma formation). However, the initial formation of both structures is not well understood. Simulations show for the first time how a commonly occurring isolated defect transforms into the larger striation and filament, through a feedback loop connecting current and electrical conductivity. Simulations have been experimentally validated using defect-driven self-emission patterns.


Subject(s)
Cytoskeleton , Plasma
3.
Science ; 348(6242): 1455-60, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26113719

ABSTRACT

Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(4 Pt 2): 046404, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15903791

ABSTRACT

Experimental and computational investigations of nanosecond electrical explosion of a thin Al wire in vacuum are presented. We have demonstrated that increasing the current rate leads to increased energy deposited before voltage collapse. The experimental evidence for synchronization of the wire expansion and light emission with voltage collapse is presented. Hydrocarbons are indicated in optical spectra and their influence on breakdown physics is discussed. The radial velocity of low-density plasma reaches a value of approximately 100 km/s. The possibility of an over-critical phase transition due to high pressure is discussed. A one-dimensional magnetohydrodynamic (MHD) simulation shows good agreement with experimental data. The MHD simulation demonstrates separation of the exploding wire into a high-density cold core and a low-density hot corona as well as fast rejection of the current from the wire core to the corona during voltage collapse. Important features of the dynamics for the wire core and corona follow from the MHD simulation and are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...