Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Inflammopharmacology ; 32(3): 1839-1853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581641

ABSTRACT

Based on their high antioxidant capacity and noteworthy phytochemistry, Terminalia ferdinandiana fruit and leaves have attracted considerable recent interest for their therapeutic potential. Whilst those studies have reported a variety of therapeutic properties for the fruit, the anti-inflammatory potential of T. ferdinandiana has been largely neglected and the leaves have been almost completely ignored. This study investigated the immune-modulatory and anti-inflammatory properties of T. ferdinandiana fruit and leaf extracts by evaluating their inhibition of multiple pro- and anti-inflammatory cytokines and chemokines secretion in lipopolysaccharide (LPS)-stimulated and unstimulated RAW 264.7 macrophages using multiplex bead immunoassays and ELISA assays. The methanolic extracts were particularly good immune-modulators, significantly inhibiting the secretion of all the cytokines and chemokines tested. Indeed, the methanolic extracts completely inhibited IL-10, IFN-γ, IL-1ß, IL-6, MCP-1, and MIP-2a secretion, and almost completely inhibited the secretion of TNF-α. In addition, the methanolic T. ferdinandiana extracts also significantly inhibited cytosolic COX-2 levels (by 87-95%) and the synthesis of the PGE2 (by ~ 98%). In contrast, the methanolic extracts stimulated LTB4 secretion by ~ 60-90%, whilst the aqueous extracts significantly inhibited LTB4 secretion (by ~ 27% each). Exposure of RAW 264.7 cells to the methanolic T. ferdinandiana extracts also significantly down-regulated the cytosolic levels of NF-κB by 33-44%, indicating that the immune-modulatory and anti-inflammatory properties of the extracts may be regulated via a decrease in NF-κB transcription pathways. Taken together, these results demonstrate potent anti-inflammatory properties for the extracts and provide insights into their anti-inflammatory mechanisms.


Subject(s)
Anti-Inflammatory Agents , Cyclooxygenase 2 , Cytokines , Dinoprostone , Down-Regulation , NF-kappa B , Plant Extracts , Plant Leaves , Terminalia , Mice , Animals , NF-kappa B/metabolism , RAW 264.7 Cells , Plant Extracts/pharmacology , Dinoprostone/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Terminalia/chemistry , Down-Regulation/drug effects , Cyclooxygenase 2/metabolism , Plant Leaves/chemistry , Macrophages/drug effects , Macrophages/metabolism , Lipopolysaccharides/pharmacology , Fruit/chemistry
2.
Microorganisms ; 12(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38543548

ABSTRACT

Terminalia ferdinandiana Exell, Terminalia grandiflora Benth., Terminalia microcarpa Decne., and Terminalia muelleri Benth. (family: Combretaceae) belong to the genus Terminalia. Plants of this genus have been extensively used as traditional medicines to treat a variety of illnesses, including pathogen infections. However, we were unable to find any studies that have investigated the antibacterial activity of T. microcarpa. Similarly, whilst some preliminary studies have examined the antimicrobial properties of T. muelleri and T. grandiflora, they did not test the extracts against antibiotic-resistant pathogens. This study screens the antimicrobial activity of T. grandiflora, T. microcarpa, and T. muelleri and compares it to that of T. ferdinandiana extracts prepared from both the fruit and leaves against a range of pathogens, including multi-antibiotic-resistant strains. Solvents with varying polarities were used to extract different phytochemical constituents from the leaves of T. grandiflora, T. microcarpa, and T. muelleri and from the fruit and leaves of T. ferdinandiana. The aqueous and methanolic extracts each displayed significant antimicrobial activity when tested against the bacterial pathogens, including against the multidrug-resistant strains. When these extracts were tested in combination with selected antibiotics, some extracts potentiated the antimicrobial activity. This study identifies twelve synergistic, fifty-eight additive, and sixty non-interactive combinations, as well as thirty antagonistic effects. The extracts were evaluated for toxicity using the Artemia franciscana nauplii lethality assay (ALA) and were each classified as non-toxic, with the exception of the methanolic and aqueous T. ferdinandiana fruit extracts and the aqueous and ethyl acetate T. ferdinandiana leaf extracts. Metabolomic analysis using liquid chromatography-mass spectrometry (LC-MS) highlighted several flavonoids and tannins that may contribute to the antimicrobial activities reported herein. The potential antibacterial mechanism(s) of the T. ferdinandiana extracts are discussed in this study.

3.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543020

ABSTRACT

Terminalia canescens DC. Radlk. (family: Combretaceae) is native to northern Australia. Species of the genus Terminalia are widely used as traditional medicines to treat diverse ailments, including bacterial infections. However, we were unable to find any studies that had examined the antimicrobial activity of T. canescens. In this study, T. canescens was screened against a panel of bacterial pathogens, including multi-antibiotic-resistant strains. Solvents with different polarities were used to extract different complements of phytochemicals from T. canescens leaves. Methanolic and aqueous extracts exhibited substantial antimicrobial activity against various pathogens, including those that are multidrug-resistant strains. When combined with some selected clinical antibiotics, some extracts potentiated the antibacterial inhibitory activity. This study identified two synergistic, eleven additive, eleven non-interactive and eight antagonistic interactions. The toxicities of the plant extracts were examined in the Artemia franciscana nauplii assay and were found to be non-toxic, except the aqueous extract, which showed toxicity. Metabolomic liquid chromatography-mass spectrometry (LC-MS) analyses highlighted and identified several flavonoids, including vitexin, quercetin, orientin and kaempferol, as well as the tannins ellagic acid and pyrogallol, which may contribute to the antibacterial activities observed herein. The possible mechanism of action of these extracts was further explored in this study.


Subject(s)
Anti-Bacterial Agents , Terminalia , Anti-Bacterial Agents/pharmacology , Terminalia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Bacteria , beta-Lactams , Microbial Sensitivity Tests
4.
Inflammopharmacology ; 32(2): 1607-1620, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38310564

ABSTRACT

This study investigates the anti-inflammatory properties of extracts prepared from the leaves of eight southern African medicinal plants used traditionally to treat inflammation and pain. The inhibitory effect of aqueous and ethanol extracts on the release of pro-inflammatory cytokines was determined in lipopolysaccharide (LPS) stimulated and unstimulated RAW 264.7 murine macrophage cells. The levels of interleukin (IL)-1ß, IL-6, tumour necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein (MIP)-2 release were determined using cytokine multiplex-bead assays. The ethanol extracts of Melianthus comosus Vahl (commonly known as honey flower), Tetradenia riparia (Hochst.) Codd (misty plume bush) and Warburgia salutaris (G. Bertol.) Chiov. (pepper-bark tree), demonstrated the most significant inhibitory activity, with over 50-fold inhibition of IL-1ß, IL-6 and TNF-α levels in LPS-stimulated RAW 264.7 macrophages. The aqueous extract of M. comosus also significantly inhibited the secretion of all the tested cytokines and chemokines. Phytochemical investigation of M. comosus ethanol leaf extract using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) led to the detection of crassolide, deoxylimonoic acid D-ring-lactone, 2-hydroxynonanoic acid and 5-noniloxytryptamine. To the best of our knowledge, the cytokine inhibition properties of most of the medicinal plants screened in this study are reported for the first time. Our results support the use of southern African medicinal plants as anti-inflammatory remedies and provide an insight into the immunomodulatory mechanisms of action.


Subject(s)
Plants, Medicinal , Animals , Mice , Plants, Medicinal/chemistry , Lipopolysaccharides/pharmacology , Plant Extracts/chemistry , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Macrophages , Cytokines/metabolism , Anti-Inflammatory Agents/chemistry , Ethanol/chemistry , Nitric Oxide/metabolism
5.
Antibiotics (Basel) ; 12(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37998845

ABSTRACT

Terminalia petiolaris A. Cunn. Ex Benth. (genus: Terminalia, family: Combretaceae) is native to Australia. Terminalia spp. have traditionally been used to treat various ailments, including bacterial infections. Solvents of varying polarity were used to extract compounds from leaves of this species, and the extracts were tested against a panel of bacteria, including antibiotic-resistant strains. The methanolic and water extracts showed substantial inhibitory activity against several bacteria, including antibiotic-resistant strains in both disc diffusion and liquid dilution assays. Combining these extracts with selected conventional antibiotics enhanced the inhibition of bacterial growth for some combinations, while others showed no significant interaction. In total, two synergistic, twenty-five additive, twenty-three non-interactive and one antagonistic interaction were observed. The methanolic and ethyl acetate plant extracts were found to be non-toxic in Artemia franciscana nauplii toxicity assays. A liquid chromatography-mass spectrometry metabolomics analysis identified several flavonoid compounds, including miquelianin, trifolin and orientin, which might contribute to the observed activities. The potential modes of these active extracts are further discussed in this study.

6.
Molecules ; 28(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894609

ABSTRACT

The development of multiple-drug-resistant pathogens has prompted medical research toward the development of new and effective antimicrobial therapies. Much research into novel antibiotics has focused on bacterial and fungal compounds, and on chemical modification of existing compounds to increase their efficacy or reactivate their antimicrobial properties. In contrast, cyanobacteria have been relatively overlooked for antibiotic discovery, and much more work is required. This may be because some cyanobacterial species produce environmental toxins, leading to concerns about the safety of cyanobacterial compounds in therapy. Despite this, several cyanobacterial-derived compounds have been identified with noteworthy inhibitory activity against bacterial, fungal and protozoal growth, as well as viral replication. Additionally, many of these compounds have relatively low toxicity and are therefore relevant targets for drug development. Of particular note, several linear and heterocyclic peptides and depsipeptides with potent activity and good safety indexes have been identified and are undergoing development as antimicrobial chemotherapies. However, substantial further studies are required to identify and screen the myriad other cyanobacterial-derived compounds to evaluate their therapeutic potential. This study reviews the known phytochemistry of cyanobacteria, and where relevant, the effects of those compounds against bacterial, fungal, protozoal and viral pathogens, with the aim of highlighting gaps in the literature and focusing future studies in this field.


Subject(s)
Anti-Infective Agents , Biological Products , Cyanobacteria , Microcystins/toxicity , Biological Products/pharmacology , Cyanobacteria/chemistry , Cyanobacteria Toxins , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents
8.
Antibiotics (Basel) ; 12(7)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37508291

ABSTRACT

Virginian witch hazel (WH; Hamamelis virginiana L.; family: Hamamelidaceae) is a North American plant that is used traditionally to treat a variety of ailments, including bacterial infections. Solvents of varying polarity (water, methanol, ethyl acetate, hexane and chloroform) were used to prepare extracts from this plant. Resuspensions of each extract in an aqueous solution were tested for growth-inhibitory activity against a panel of bacteria (including three antibiotic-resistant strains) using agar disc diffusion and broth microdilution assays. The ethyl acetate, hexane and chloroform extracts were completely ineffective. However, the water and methanolic extracts were good inhibitors of E. coli, ESBL E. coli, S. aureus, MRSA, K. pneumoniae and ESBL K. pneumoniae growth, with the methanolic extract generally displaying substantially greater potency than the other extracts. Combining the active extracts with selected conventional antibiotics potentiated the bacterial growth inhibition of some combinations, whilst other combinations remained non-interactive. No synergistic or antagonistic interactions were observed for any WH extracts/antibiotic combinations. Gas chromatography-mass spectrometry analysis of the extracts identified three molecules of interest that may contribute to the activities observed, including phthalane and two 1,3-dioxolane compounds. Putative modes of action of the active WH extracts and these molecules of interest are discussed herein.

9.
Malays J Med Sci ; 30(2): 42-54, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37102050

ABSTRACT

Acute diarrhoea is becoming a major public health problem in Malaysia, with more than 13.5 million cases reported annually. Foodborne bacterial pathogens are a predominant cause of diarrhoea, with infections causing prolonged illness durations and higher patient mortality rates, placing a tremendous burden on the Malaysian economy. Due to increasing incidences of diarrhoea in Malaysia caused by foodborne pathogens and the increasing levels of resistance towards antibiotics from many different classes, new drugs and/or therapies are urgently required. The evidence for plants as new sources of antibiotics has increased dramatically in recent years and there has been a substantial increase in interest in traditional and herbal medicines. Several Terminalia spp. are native to Malaysia, with previous research demonstrating that Terminalia spp. are rich in therapeutic phytochemicals and possess antibacterial properties. However, limited research has been conducted on the native Malaysian Terminalia spp. for their potential as new antibacterial therapies. The current review discusses the types of bacteria, including antibiotic-resistant strains, that cause food poisoning in Malaysia, and reports the phytochemical content and antibacterial properties of eight of these useful plant species. Future directions pertaining to drug discovery pathways are also suggested.

10.
Antibiotics (Basel) ; 12(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36830317

ABSTRACT

Antibiotic growth promoters (AGPs) suppress the growth of infectious pathogens. These pathogens negatively impact agricultural production worldwide and often cause health problems if left untreated. Here, we evaluate six Bacillus strains (BPR-11, BPR-12, BPR-13, BPR-14, BPR-16 and BPR-17), which are known for their ability to survive harsh environmental conditions, as AGP replacements in animal feed. Four of these Bacillus strains (BPR-11, BPR-14, BPR-16 and BPR-17) showed antimicrobial activity against the pathogenic strains Clostridium perfringens, Escherichia coli and Staphylococcus aureus at 25 µg/mL, with BPR-16 and BPR-17 also able to inhibit Pseudomonas aeruginosa and Salmonella enterica at 100 µg/mL. Further chemical investigation of BPR-17 led to the identification of eight metabolites, namely C16, C15, C14 and C13 surfactin C (1-4), maculosin (5), maculosine 2 (6), genistein (7) and daidzein (8). Purified compounds (1-4) were able to inhibit all the tested pathogens with MIC values ranging from 6.25 to 50 µg/mL. Maculosin (5) and maculosine 2 (6) inhibited C. perfringens, E. coli and S. aureus with an MIC of 25 µg/mL while genistein (7) and daidzein (8) showed no activity. An animal trial involving feeding BPR-11, BPR-16 and BPR-17 to a laboratory poultry model led to an increase in animal growth, and a decrease in feed conversion ratio and mortality. The presence of surfactin C analogues (3-4) in the gut following feeding with probiotics was confirmed using an LC-MS analysis. The investigation of these Bacillus probiotics, their metabolites, their impacts on animal performance indicators and their presence in the gastrointestinal system illustrates that these probiotics are effective alternatives to AGPs.

11.
Molecules ; 27(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431834

ABSTRACT

The genus Eremophila (family Scrophulariaceae) consists of approximately 200 species that are widely distributed in the semi-arid and arid regions of Australia. Multiple Eremophila spp. are used as traditional medicines by the First Australians in the areas in which they grow. They are used for their antibacterial, antifungal, antiviral, antioxidant, anti-diabetic, anti-inflammatory, and cardiac properties. Many species of this genus are beneficial against several diseases and ailments. The antibacterial properties of the genus have been relatively well studied, with several important compounds identified and their mechanisms studied. In particular, Eremophila spp. are rich in terpenoids, and the antimicrobial bioactivities of many of these compounds have already been confirmed. The therapeutic properties of Eremophila spp. preparations and purified compounds have received substantially less attention, and much study is required to validate the traditional uses and to highlight species that warrant further investigation as drug leads. The aim of this study is to review and summarise the research into the medicinal properties, therapeutic mechanisms, and phytochemistry of Eremophila spp., with the aim of focussing future studies into the therapeutic potential of this important genus.


Subject(s)
Scrophulariaceae , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Australia , Medicine, Traditional , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
12.
Antibiotics (Basel) ; 11(1)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35052965

ABSTRACT

The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.

13.
Inflammopharmacology ; 30(1): 207-223, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34989930

ABSTRACT

Traditional medicines prepared using Terminalia species have been used globally to treat inflammation and pathogenic infections. Recent studies have demonstrated that multiple Asian and African Terminalia spp. inhibit bacterial triggers of some autoimmune inflammatory diseases, including ankylosing spondylitis. Despite this, the effects of Australian Terminalia spp. on a bacterial trigger of ankylosing spondylitis (K. pneumoniae) remain unexplored. Fifty-five extracts from five Australian Terminalia spp. were investigated for K. pneumoniae growth inhibitory activity. Methanolic, aqueous and ethyl acetate extracts of most species and plant parts inhibited K. pneumoniae growth, with varying potencies. Methanolic leaf extracts were generally the most potent bacterial growth inhibitors, with minimum inhibitory concentration (MIC) values of 66 µg/mL (T. ferdinandiana), 128 µg/mL (T. carpenteriae) and 83 µg/mL (T. petiolares). However, the aqueous leaf extract was the most potent T. grandiflora extract (MIC = 87 µg/mL). All T. catappa extracts displayed low growth inhibitory activity. The Terminalia spp. methanolic leaf extracts were examined by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). All contained a relative abundance of simple gallotannins (particularly gallic and chebulic acids), the flavonoid luteolin, as well as the monoterpenoids cineole and terpineol. Notably, all Terminalia spp. were non-toxic or of low toxicity in ALA and HDF toxicity assays, highlighting their potential for preventing the onset of ankylosing spondylitis and treating its symptoms once the disease is established, although this needs to be verified in in vivo systems.


Subject(s)
Spondylitis, Ankylosing , Terminalia , Anti-Bacterial Agents/pharmacology , Australia , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Spondylitis, Ankylosing/drug therapy , Spondylitis, Ankylosing/microbiology , Terminalia/chemistry
14.
Nat Prod Res ; 36(20): 5199-5205, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34000925

ABSTRACT

A new picrotoxane terpenoid glycoside, austrobuxusin N (1), together with four known compounds, austrobuxusin A-D (2-5), were isolated from the leaves of the Australian endemic plant Austrobuxus swainii (Beuzev. & C.T. White) Airy Shaw. The chemical structure of 1 was elucidated by 1D- and 2D-NMR spectroscopy, along with MS data. The sugar moiety in 1 was determined to be ß-D-glucose by acid hydrolysis and subsequent comparison of its specific rotation with that of standard. The relative configuration of the aglycone was assigned by ROESY NMR experiment and density functional theory (DFT) calculation of NMR data coupled with DP4 analysis. Cytotoxicity test revealed that compound 1 exhibited 71% inhibition against Caco-2 cell line at the concentration of 166 µM.[Formula: see text].


Subject(s)
Cardiac Glycosides , Malpighiales , Australia , Caco-2 Cells , Glucose/analysis , Glycosides/chemistry , Humans , Molecular Structure , Plant Extracts/pharmacology , Plant Leaves/chemistry , Sugars/analysis , Terpenes/analysis
15.
J Ethnopharmacol ; 283: 114436, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34289396

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Inflammation is a serious global concern due to its debilitating symptoms, resulting in considerable suffering and lost productivity. Chronic and auto-immune inflammatory diseases are of particular concern. Several pharmaceutical therapies are already available. However, the use of non-steroidal anti-inflammatory drugs (NSAID's) is accompanied by harmful and toxic side effects. Hence, the search for safer alternative therapeutics with limited side effects is imperative. The use of medicinal plants is common practice amongst the southern African population and may provide targets for drug development. AIM OF THE STUDY: This study aims to review and document the medicinal uses and pharmacological properties of southern African medicinal plants used for inflammation and pain-related ailments. MATERIAL AND METHODS: An extensive literature review was undertaken to identify southern African plants used traditionally to treat inflammation. A variety of ethnobotanical books and grey literature, as well as ScienceDirect, Google Scholar and Scopus search engines were used as sources of information. RESULTS: This review identified 555 medicinal plants from 118 families which were traditionally used in southern Africa to treat inflammation and pain. Fabaceae was the most prominent family with 63 species, followed by Asteraceae (54 species) and Apocynaceae (33 species). The top category of ailments indicated include non-specific inflammation with 150 species, followed by inflammatory pain (148 species), headache (114 species) and toothache (114 species). CONCLUSION: Despite a large number of southern African medicinal plants used to treat inflammation and pain, relatively few have been screened for their anti-inflammatory properties. Furthermore, biologically active plant extracts have been tested against relatively few inflammatory markers and considerable further work is required.


Subject(s)
Inflammation/drug therapy , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Africa, Southern , Animals , Ethnobotany , Ethnopharmacology , Humans , Medicine, African Traditional/methods , Pain/drug therapy
16.
J Tradit Complement Med ; 11(5): 457-465, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34522640

ABSTRACT

Staphylococcal and streptococcal species trigger a wide variety of infections involving epithelial tissues. Virginian witch hazel (WH; Hamamelis virginiana L.; family: Hamamelidaceae) is a plant that has been used traditionally by Native Americans to treat a variety of skin conditions. Extracts from the leaves were examined for their inhibitory effects on these bacterial species. Solvents of different polarity (water, methanol, ethyl acetate, hexane and chloroform) were used to prepare extracts from WH leaves, and the aqueous resuspensions were screened for antibacterial activities using disc diffusion and liquid dilution assays. Extract phytochemical profiles and toxicities were also examined, and combinations of extracts with conventional antibiotics were tested against each bacterial strain. The methanolic and aqueous extracts inhibited the growth of S. oralis, S. pyogenes, S. epidermidis and S. aureus, but not S. mutans. The extracts were especially active against staphylococcal species, with MIC values between 200 and 500 µg/ml. Combinations of active extracts with conventional antibiotics failed to yield beneficial interactions, except for two cases where additive interactions were observed (aqueous WH extract combined with chloramphenicol against S. oralis, and methanolic WH extract combined with ciprofloxacin against S. aureus). Phytochemical assays indicated an abundance of tannins, triterpenoids and phenolics in the water and methanol extracts, with trace amounts of these components in the ethyl acetate extract. Phytochemicals were not detected in hexane and chloroform extracts. Thus, phytochemical abundance in extracts was concordant with antibacterial activities. All extracts were found to be non-toxic in Artemia nauplii assays. These findings indicate the potential for WH leaf extracts for clinical use in treating staphylococcal and streptococcal infections, while substantiating their traditional Native American uses.

17.
Article in English | MEDLINE | ID: mdl-34367307

ABSTRACT

Urinary tract infections (UTIs) are amongst the most common bacterial infections globally, with ∼11% of the world's population contracting at least one infection annually. Several South African plants are used in traditional healing systems to treat UTIs, yet the therapeutic potential of these plants against bacteria that cause UTI remains poorly explored. This study documents southern African plant species used traditionally to treat UTIs. An extensive literature review was undertaken to document the southern African plant species that are used in traditional South African medicine to treat UTIs, thereby highlighting gaps in the current research that require further study. One hundred and fifty-three southern African plant species that are used to treat UTIs were identified. Eighty-five southern African plants were identified as having noteworthy inhibitory activity against the major UTI-causing bacteria. Few of those studies screened against all of the bacterial causes of UTIs, and none of those studies examined the mechanism of action of the plant preparations. Furthermore, many of those studies did not test the toxicity of the plant extracts, so an evaluation of the safety for therapeutic usage was lacking. Substantial further research is to determine their potential for therapeutic use.

18.
Article in English | MEDLINE | ID: mdl-34122610

ABSTRACT

The emergence of MDR bacterial pathogens has directed antibiotic discovery research towards alternative therapies and traditional medicines. Boswellia sacra oleoresin (frankincense) was used to treat bacterial infections in traditional Arabian and Asian healing systems for at least 1000 years. Despite this, B. sacra extracts have not been rigorously tested for inhibitory activity against gastrointestinal pathogens or bacterial triggers of autoimmune diseases. Solvent extracts were prepared from Boswellia sacra oleoresins obtained from three regions near Salalah, Oman. MIC values were quantified against gastrointestinal pathogens and bacterial triggers of selected autoimmune diseases by disc diffusion and broth dilution methods. The antibacterial activity was also evaluated in combination with conventional antibiotics, and the class of interaction was determined by ΣFIC analysis. Isobolograms were used to determine the optimal ratios for synergistic combinations. Toxicity was evaluated by ALA and HDF cell viability bioassays. The phytochemical composition of the volatile components of all extracts was identified by nontargeted GC-MS headspace analysis. All methanolic extracts inhibited the growth of all of the bacteria tested, although the extracts prepared using Najdi oleoresin were generally more potent than the Sahli and Houjari extracts. Combinations of the methanolic B. sacra extracts and conventional antibiotics were significantly more effective in inhibiting the growth of several bacterial pathogens. In total, there were 38 synergistic and 166 additive combinations. Approximately half of the synergistic combinations contained tetracycline. All B. sacra extracts were nontoxic in the ALA and HDF cell viability assays. Nonbiased GC-MS headspace analysis of the methanolic extracts putatively identified a high diversity of monoterpenoids, with particularly high abundances of α-pinene. The antibacterial activity and lack of toxicity of the B. sacra extracts indicate their potential in the treatment and prevention of gastrointestinal and autoimmune diseases. Furthermore, the extracts potentiated the activity of several conventional antibiotics, indicating that they may contain resistance-modifying compounds.

19.
Sci Rep ; 11(1): 5519, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750911

ABSTRACT

Bark from the Handroanthus impetiginosus (Mart. ex DC.) Mattos (Bignoniaceae) tree has long been used in traditional South American healing practises to treat inflammation. However, its anti-inflammatory activity has not been closely examined. Here we use chemical extraction, qualitative phytochemical examination, toxicity testing and quantitative examination of anti-inflammatory activity on human cells ex vivo. All extracts were found to be nontoxic. We found different extracts exhibited unique cytokine profiles with some extracts outperforming a positive control used in the clinic. These results verify the immunomodulatory activity of Handroanthus impetiginosus (Mart. ex DC.) Mattos (Bignoniaceae) tree bark-derived compounds. Collectively, combining a lack of toxicity and potency in human immune cells supports further fractionation and research.


Subject(s)
Cytokines/immunology , Immunologic Factors , Lymphocytes/immunology , Plant Bark/chemistry , Plant Extracts , Plants, Medicinal/chemistry , Tabebuia/chemistry , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
20.
Assay Drug Dev Technol ; 19(3): 191-203, 2021 04.
Article in English | MEDLINE | ID: mdl-33471566

ABSTRACT

The challenges with scaffold profiling of cell-based assay includes accelerated cancer cell proliferation, induced scaffold toxicity, and identifying irrelevant cancer cell-based assays in batch assessments. This study investigates profiling carcinoma of breast cancer cells of MCF-7 model systems using silica nanoparticles scaffold sourced from synthetic materials and plant extracts. Herein, the engineered tissue scaffolds were used to create temporary structures for cancer cell attachments, differentiation, and subsequently to assess the metabolic activity of the cancer cell colonies. The cell viability of the cancer cells was assessed using the tetrazolium compound (MTS reagent), which was reduced to colored formazan, to indicate metabolically active cancer cells in a proliferating assay. We aimed to develop cancer cell-based scaffolds that not only mimic the neoplastic activity, but that also allowed synergistic interaction with cisplatin for in vitro assay screening.


Subject(s)
Nanoparticles , Silicon Dioxide , Tissue Scaffolds , Tumor Microenvironment , Cell Proliferation , Cell Survival , Fluorescent Antibody Technique , Humans , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...