Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
J Phys Chem Lett ; 7(22): 4677-4682, 2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27934203

ABSTRACT

The transition between two distinct ionization mechanisms in femtosecond laser fields at 785 nm is observed for C60 molecules. The transition occurs in the investigated intensity range from 3 to 20 TW/cm2 and is visualized in electron kinetic energy spectra below the one-photon energy (1.5 eV) obtained via velocity map imaging. Assignment of several observed broad spectral peaks to ionization from superatom molecular orbitals (SAMOs) and Rydberg states is based on time-dependent density functional theory simulations. We find that ionization from SAMOs dominates the spectra for intensities below 5 TW/cm2. As the intensity increases, Rydberg state ionization exceeds the prominence of SAMOs. Using short laser pulses (20 fs) allowed uncovering of distinct six-lobe photoelectron angular distributions with kinetic energies just above the threshold (below 0.2 eV), which we interpret as over-the-barrier ionization of shallow f-Rydberg states in C60.

2.
Phys Rev Lett ; 114(12): 123004, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25860740

ABSTRACT

Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.

3.
Phys Rev Lett ; 112(11): 113005, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24702362

ABSTRACT

The transition between two distinct mechanisms for the laser-induced field-free orientation of CO molecules is observed via measurements of orientation revival times and subsequent comparison to theoretical calculations. In the first mechanism, which we find responsible for the orientation of CO up to peak intensities of 8 × 10(13) W/cm(2), the molecules are impulsively oriented through the hyperpolarizability interaction. At higher intensities, asymmetric depletion through orientation-selective ionization is the dominant orienting mechanism. In addition to the clear identification of the two regimes of orientation, we propose that careful measurements of the onset of the orientation depletion mechanism as a function of the laser intensity will provide a relatively simple route to calibrating absolute rates of nonperturbative strong-field molecular ionization.

4.
Opt Express ; 21(14): 16914-27, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23938540

ABSTRACT

In this work we propose a novel procedure for the characterization of attosecond pulses. The method relies on the conversion of the attosecond pulse into electron wave-packets through photoionization of atoms in the presence of a weak IR field. It allows for the unique determination of the spectral phase making up the pulses by accurately taking into account the atomic physics of the photoionization process. The phases are evaluated by optimizing the fit of a perturbation theory calculation to the experimental result. The method has been called iPROOF (improved Phase Retrieval by Omega Oscillation Filtering) as it bears a similarity to the PROOF technique [Chini et al. Opt. Express 18, 13006 (2010)]. The procedure has been demonstrated for the characterization of an attosecond pulse train composed of odd and even harmonics. We observe a large phase shift between consecutive odd and even harmonics. The resulting attosecond pulse train has a complex structure not resembling a single attosecond pulse once per IR period, which is the case for zero phase. Finally, the retrieval procedure can be applied to the characterization of single attosecond pulses as well.


Subject(s)
Light , Models, Theoretical , Photometry/methods , Scattering, Radiation , Signal Processing, Computer-Assisted , Computer Simulation
5.
Phys Rev Lett ; 111(1): 013003, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23862999

ABSTRACT

We investigate the single-photon double ionization of helium at photon energies of 440 and 800 eV. We observe doubly charged ions with close to zero momentum corresponding to electrons emitted back to back with equal energy. These slow ions are the unique fingerprint of an elusive quasifree photon double ionization mechanism predicted by Amusia et al. nearly four decades ago [J. Phys. B 8, 1248 (1975)]. It results from the nondipole part of the electromagnetic interaction. Our experimental data are supported by calculations performed using the convergent close-coupling and time-dependent close-coupling methods.

6.
Phys Rev Lett ; 109(8): 083001, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-23002742

ABSTRACT

We experimentally demonstrate that atomic orbital parity mix interferences can be temporally controlled on an attosecond time scale. Electron wave packets are formed by ionizing argon gas with a comb of odd and even high-order harmonics, in the presence of a weak infrared field. Consequently, a mix of energy-degenerate even and odd parity states is fed in the continuum by one- and two-photon transitions. These interfere, leading to an asymmetric electron emission along the polarization vector. The direction of the emission can be controlled by varying the time delay between the comb and infrared field pulses. We show that such asymmetric emission provides information on the relative phase of consecutive odd and even order harmonics in the attosecond pulse train.

7.
Phys Rev Lett ; 104(2): 023001, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20366590

ABSTRACT

We demonstrate an experimental control of electron localization in deuterium molecular ions created and dissociated by the combined action of an attosecond pulse train and a many-cycle infrared (IR) pulse. The attosecond pulse train is synthesized using both even and odd high order harmonics of the driving IR frequency so that it can strobe the IR field once per IR cycle. An asymmetric ejection of the deuterium ions oscillates with the full IR period when the APT-IR time-delay is scanned. The observed control is due to the creation of a coherent superposition of 1s sigma{g} and 2p sigma{u} states via interference between one-photon and two-photon dissociation channels.

8.
Phys Rev Lett ; 103(15): 153002, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19905632

ABSTRACT

We report the first experimental observation of nonadiabatic field-free orientation of a heteronuclear diatomic molecule (CO) induced by an intense two-color (800 and 400 nm) femtosecond laser field. We monitor orientation by measuring fragment ion angular distributions after Coulomb explosion with an 800 nm pulse. The orientation of the molecules is controlled by the relative phase of the two-color field. The results are compared to quantum mechanical rigid rotor calculations. The demonstrated method can be applied to study molecular frame dynamics under field-free conditions in conjunction with a variety of spectroscopy methods, such as high-harmonic generation, electron diffraction, and molecular frame photoelectron emission.

9.
Phys Rev Lett ; 102(22): 223001, 2009 Jun 05.
Article in English | MEDLINE | ID: mdl-19658860

ABSTRACT

We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

10.
Phys Rev Lett ; 103(22): 223201, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-20366092

ABSTRACT

Two-color (800 and 400 nm) short (45 fs) linearly polarized pulses are used to ionize and dissociate D2 into a neutral deuterium atom and a deuteron. The yields and energies of the ions are measured left and right along the polarization vector. As the relative phase of the two colors is varied, strong yield asymmetries are found in the ion-energy regions traditionally identified as bond softening, above-threshold dissociation and rescattering. The asymmetries in these regions are quite different. A model based on the dynamic coupling by the laser field of the gerade and ungerade states in the molecular ion accounts for many of the observed features.

11.
Phys Rev Lett ; 101(8): 083201, 2008 Aug 22.
Article in English | MEDLINE | ID: mdl-18764612

ABSTRACT

We report the direct observation of interference effects in a Young's double-slit experiment where the interfering waves are two spatially separated components of the de Broglie wave of single 1.3 MeV hydrogen atoms formed close to either target nucleus in H++H2 electron-transfer collisions. Quantum interference strongly influences the results even though the hydrogen atoms have a de Broglie wavelength, lambda_{dB}, as small as 25 fm.

12.
Phys Rev Lett ; 100(13): 133005, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18517946

ABSTRACT

We investigate single-photon double ionization of H(2) by 130 to 240 eV circularly polarized photons. We find a double slitlike interference pattern in the sum momentum of both electrons in the molecular frame which survives integration over all other degrees of freedom. The difference momentum and the individual electron momentum distributions do not show such a robust interference pattern. We show that this interference results from a non-Heitler-London fraction of the H(2) ground state where both electrons are at the same atomic center.

13.
Phys Rev Lett ; 100(14): 143002, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18518027

ABSTRACT

We have measured full momentum images of electrons rescattered from Xe, Kr, and Ar following the liberation of the electrons from these atoms by short, intense laser pulses. At high momenta the spectra show angular structure (diffraction) which is very target dependent and in good agreement with calculated differential cross sections for the scattering of free electrons from the corresponding ionic cores.

14.
Science ; 320(5878): 920-3, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18487190

ABSTRACT

Although valence electrons are clearly delocalized in molecular bonding frameworks, chemists and physicists have long debated the question of whether the core vacancy created in a homonuclear diatomic molecule by absorption of a single x-ray photon is localized on one atom or delocalized over both. We have been able to clarify this question with an experiment that uses Auger electron angular emission patterns from molecular nitrogen after inner-shell ionization as an ultrafast probe of hole localization. The experiment, along with the accompanying theory, shows that observation of symmetry breaking (localization) or preservation (delocalization) depends on how the quantum entangled Bell state created by Auger decay is detected by the measurement.

15.
Science ; 318(5852): 949-52, 2007 Nov 09.
Article in English | MEDLINE | ID: mdl-17991857

ABSTRACT

The wave nature of particles is rarely observed, in part because of their very short de Broglie wavelengths in most situations. However, even with wavelengths close to the size of their surroundings, the particles couple to their environment (for example, by gravity, Coulomb interaction, or thermal radiation). These couplings shift the wave phases, often in an uncontrolled way, and the resulting decoherence, or loss of phase integrity, is thought to be a main cause of the transition from quantum to classical behavior. How much interaction is needed to induce this transition? Here we show that a photoelectron and two protons form a minimum particle/slit system and that a single additional electron constitutes a minimum environment. Interference fringes observed in the angular distribution of a single electron are lost through its Coulomb interaction with a second electron, though the correlated momenta of the entangled electron pair continue to exhibit quantum interference.

16.
Science ; 317(5843): 1374-8, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17823349

ABSTRACT

The direct observation of molecular dynamics initiated by x-rays has been hindered to date by the lack of bright femtosecond sources of short-wavelength light. We used soft x-ray beams generated by high-harmonic upconversion of a femtosecond laser to photoionize a nitrogen molecule, creating highly excited molecular cations. A strong infrared pulse was then used to probe the ultrafast electronic and nuclear dynamics as the molecule exploded. We found that substantial fragmentation occurs through an electron-shakeup process, in which a second electron is simultaneously excited during the soft x-ray photoionization process. During fragmentation, the molecular potential seen by the electron changes rapidly from nearly spherically symmetric to a two-center molecular potential. Our approach can capture in real time and with angstrom resolution the influence of ionizing radiation on a range of molecular systems, probing dynamics that are inaccessible with the use of other techniques.

17.
Phys Rev Lett ; 98(7): 073003, 2007 Feb 16.
Article in English | MEDLINE | ID: mdl-17359022

ABSTRACT

Using H2+ and D2+, we observe two-surface population dynamics by measuring the kinetic energy of the correlated ions that are created when H2+ (D2+) ionize in short (40-140 fs) and intense (10(14) W/cm2) infrared laser pulses. Experimentally, we find a modulation of the kinetic energy spectrum of the correlated fragments. The spectral progression arises from a hitherto unexpected spatial modulation on the excited state population, revealed by Coulomb explosion. By solving the two-level time-dependent Schrödinger equation, we show that an interference between the net-two-photon and the one-photon transition creates localized electrons which subsequently ionize.

18.
Science ; 315(5812): 629-33, 2007 Feb 02.
Article in English | MEDLINE | ID: mdl-17272717

ABSTRACT

H2, the smallest and most abundant molecule in the universe, has a perfectly symmetric ground state. What does it take to break this symmetry? We found that the inversion symmetry can be broken by absorption of a linearly polarized photon, which itself has inversion symmetry. In particular, the emission of a photoelectron with subsequent dissociation of the remaining H+2 fragment shows no symmetry with respect to the ionic H+ and neutral H atomic fragments. This lack of symmetry results from the entanglement between symmetric and antisymmetric H+2 states that is caused by autoionization. The mechanisms behind this symmetry breaking are general for all molecules.

19.
Phys Rev Lett ; 93(18): 183202, 2004 Oct 29.
Article in English | MEDLINE | ID: mdl-15525161

ABSTRACT

We have measured coincident ion pairs produced in the Coulomb explosion of H2 by 8-30 fs laser pulses at different laser intensities. We show how the Coulomb explosion of H2 can be experimentally controlled by tuning the appropriate pulse duration and laser intensity. For laser pulses less than 15 fs, we found that the rescattering-induced Coulomb explosion is dominated by first-return recollisions, while for longer pulses and at the proper laser intensity, the third return can be made to be the major one. Additionally, by choosing suitable pulse duration and laser intensity, we show H2 Coulomb explosion proceeding through three distinct processes that are simultaneously observable, each exhibiting different characteristics and revealing distinctive time information about the H2 evolution in the laser pulse.

20.
Phys Rev Lett ; 93(8): 083002, 2004 Aug 20.
Article in English | MEDLINE | ID: mdl-15447180

ABSTRACT

Diffraction of a low energy (<4 eV) carbon-K-photoelectron wave that is created inside a CO molecule by absorption of a circularly polarized photon is investigated. The measurements resolve the vibrational states of the K-shell ionized CO+ molecule and display the photoelectron diffraction patterns in the molecular frame. These show significant variation for the different vibrational states. This effect is stronger than predicted by state-of-the-art theory. As this study is performed close to C-K-threshold and, therefore, far below the molecule's sigma-shape resonance, this surprisingly strong effect is not related to that resonance phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL