Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Microfluid Nanofluidics ; 21(11): 168, 2017.
Article in English | MEDLINE | ID: mdl-32009866

ABSTRACT

A fundamental step in the rational design of vascular targeted particles is the firm adhesion at the blood vessel walls. Here, a combined lattice Boltzmann-immersed boundary model is presented for predicting the near-wall dynamics of circulating particles. A moving least squares algorithm is used to reconstruct the forcing term accounting for the immersed particle, whereas ligand-receptor binding at the particle-wall interface is described via forward and reverse probability distributions. First, it is demonstrated that the model predicts with good accuracy the rolling velocity of tumor cells over an endothelial layer in a microfluidic channel. Then, particle-wall interactions are systematically analyzed in terms of particle geometries (circular, elliptical with aspect ratios 2 and 3), surface ligand densities (0.3, 0.5, 0.7 and 0.9), ligand-receptor bond strengths (1 and 2) and Reynolds numbers (Re = 0.01, 0.1 and 1.0). Depending on these conditions, four different particle-wall interaction regimens are identified, namely not adhering, rolling, sliding and firmly adhering particles. The proposed computational strategy can be efficiently used for predicting the near-wall dynamics of particles with arbitrary geometries and surface properties and represents a fundamental tool in the rational design of particles for the specific delivery of therapeutic and imaging agents.

2.
Article in English | MEDLINE | ID: mdl-25019908

ABSTRACT

In this paper the phase behavior and pattern formation in a sheared nonideal fluid under a periodic potential is studied. An isothermal two-dimensional formulation of a lattice Boltzmann scheme for a liquid-vapor system with the van der Waals equation of state is presented and validated. Shear is applied by moving walls and the periodic potential varies along the flow direction. A region of the parameter space, where in the absence of flow a striped phase with oscillating density is stable, will be considered. At low shear rates the periodic patterns are preserved and slightly distorted by the flow. At high shear rates the striped phase loses its stability and traveling waves on the interface between the liquid and vapor regions are observed. These waves spread over the whole system with wavelength only depending on the length of the system. Velocity field patterns, characterized by a single vortex, will also be shown.


Subject(s)
Gases/chemistry , Hydrodynamics , Models, Chemical , Phase Transition , Rheology/methods , Solutions/chemistry , Computer Simulation , Oscillometry/methods , Shear Strength
3.
Buenos Aires; s.n; 1917. 382 p.
Thesis in Spanish | Coleciona SUS, IMNS | ID: biblio-923561
SELECTION OF CITATIONS
SEARCH DETAIL
...