Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 19(12): 2502-2515, 2020 12.
Article in English | MEDLINE | ID: mdl-33082276

ABSTRACT

Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hematologic Neoplasms/metabolism , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrimidines/metabolism , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage/drug effects , Dihydroorotate Dehydrogenase , Genomics/methods , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/etiology , Hematologic Neoplasms/pathology , Humans , Neoplasm Staging , Proteomics/methods
2.
Cell Rep ; 17(3): 876-890, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27732861

ABSTRACT

Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA) cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention.


Subject(s)
Aspartic Acid/metabolism , Ketoglutarate Dehydrogenase Complex/metabolism , Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Respiration/drug effects , Citric Acid Cycle/drug effects , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , Humans , RNA, Small Interfering/metabolism
3.
J Biol Chem ; 285(51): 39835-43, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-20940293

ABSTRACT

Several Hsp90 (heat shock protein 90) inhibitors are currently under clinical evaluation as anticancer agents. However, the correlation between the duration and magnitude of Hsp90 inhibition and the downstream effects on client protein degradation and cancer cell growth inhibition has not been thoroughly investigated. To investigate the relationship between Hsp90 inhibition and cellular effects, we developed a method that measures drug occupancy on Hsp90 after treatment with the Hsp90 inhibitor IPI-504 in living cells and in tumor xenografts. In cells, we find the level of Hsp90 occupancy to be directly correlated with cell growth inhibition. At the molecular level, the relationship between Hsp90 occupancy and Hsp90 client protein degradation was examined for different client proteins. For sensitive Hsp90 clients (e.g. HER2 (human epidermal growth factor receptor 2), client protein levels directly mirror Hsp90 occupancy at all time points after IPI-504 administration. For insensitive client proteins, we find that protein abundance matches Hsp90 occupancy only after prolonged incubation with drug. Additionally, we investigate the correlation between plasma pharmacokinetics (PK), tumor PK, pharmacodynamics (PD) (client protein degradation), tumor growth inhibition, and Hsp90 occupancy in a xenograft model of human cancer. Our results indicate Hsp90 occupancy to be a better predictor of PD than either plasma PK or tumor PK. In the nonsmall cell lung cancer xenograft model studied, a linear correlation between Hsp90 occupancy and tumor growth inhibition was found. This novel binding assay was evaluated both in vitro and in vivo and could be used as a pharmacodynamic readout in the clinic.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Benzoquinones/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacokinetics , Lung Neoplasms/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/pharmacology , Benzoquinones/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , HSP90 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Lactams, Macrocyclic/pharmacology , Lung Neoplasms/metabolism , Mice , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...