Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957654

ABSTRACT

Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single- and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.


Subject(s)
Lipid Bilayers/chemistry , Membranes, Artificial , Microscopy, Atomic Force/methods , Silicon/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Phase Transition , Phospholipids/chemistry , Temperature , Vacuum , Volatilization
2.
PLoS One ; 9(4): e95457, 2014.
Article in English | MEDLINE | ID: mdl-24755644

ABSTRACT

Immune-based anti-tumor or anti-angiogenic therapies hold considerable promise for the treatment of cancer. The first approach seeks to activate tumor antigen-specific T lymphocytes while, the second, delays tumor growth by interfering with blood supply. Tumor Associated Antigens are often employed to target tumors with therapeutic drugs, but some are also essential for tumor viability. Survivin (Surv) is a member of the inhibitor of apoptosis protein family that is considered a Tumor Associated Antigen important for cancer cell viability and proliferation. On the other hand, Trypanosoma cruzi (the agent of Chagas' disease) calreticulin (TcCRT) displays remarkable anti-angiogenic properties. Because these molecules are associated with different tumor targets, we reasoned that immunization with a Surv-encoding plasmid (pSurv) and concomitant TcCRT administration should generate a stronger anti-tumor response than application of either treatment separately. To evaluate this possibility, C57BL/6 mice were immunized with pSurv and challenged with an isogenic melanoma cell line that had been pre-incubated with recombinant TcCRT (rTcCRT). Following tumor cell inoculation, mice were injected with additional doses of rTcCRT. For the combined regimen we observed in mice that: i). Tumor growth was impaired, ii). Humoral anti-rTcCRT immunity was induced and, iii). In vitro rTcCRT bound to melanocytes, thereby promoting the incorporation of human C1q and subsequent macrophage phagocytosis of tumor cells. These observations are interpreted to reflect the consequence of the following sequence of events: rTcCRT anti-angiogenic activity leads to stress in tumor cells. Murine CRT is then translocated to the external membrane where, together with rTcCRT, complement C1 is captured, thus promoting tumor phagocytosis. Presentation of the Tumor Associated Antigen Surv induces the adaptive anti-tumor immunity and, independently, mediates anti-endothelial cell immunity leading to an important delay in tumor growth.


Subject(s)
Calreticulin/therapeutic use , Inhibitor of Apoptosis Proteins/therapeutic use , Melanoma/drug therapy , Trypanosoma cruzi/metabolism , Animals , Calreticulin/administration & dosage , Calreticulin/chemistry , Calreticulin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Complement C1q/metabolism , Female , Humans , Immunity, Humoral/drug effects , Immunization , Inhibitor of Apoptosis Proteins/metabolism , Macrophages/drug effects , Macrophages/metabolism , Melanocytes/drug effects , Melanocytes/metabolism , Melanocytes/pathology , Melanoma/blood supply , Melanoma/immunology , Melanoma/pathology , Mice, Inbred C57BL , Models, Biological , Neovascularization, Pathologic/therapy , Phagocytosis/drug effects , Protein Binding/drug effects , Protein Structure, Tertiary , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Subcutaneous Tissue/drug effects , Subcutaneous Tissue/pathology , Survivin
SELECTION OF CITATIONS
SEARCH DETAIL
...