Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Regul Toxicol Pharmacol ; 151: 105665, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885874

ABSTRACT

During 2020, The European Chemicals Agency (ECHA) began evaluating the OECD Test Guideline 443: Extended One Generation Reproductive Toxicity Study (EOGRTS) to analyze specific aspects related to study design, conduct and toxicological findings. A significant outcome of this ECHA evaluation focused on adequate dose level selection. Subsequently, ECHA published recommendations for DART studies, however, these recommendations seemingly do not align with the principles of the 3Rs, animal welfare or human safety goals, specifically, regarding three aspects. First, the requirement to segregate testing for sexual function and fertility from the ability to produce normally developing offspring increases the risk of inadequate identification of postnatal hazards for development and sexual function and fertility, therefore failing human health protection goals. Second, the current ECHA high-dose level setting recommendations for EOGRTS exceed the MTD (Maximum Tolerated Dose), and therefore compromise the interpretation of the biological response relative to the intrinsic effect of the chemical under evaluation. Third, the combination of these aspects will result in an increase in the number of animals tested, increasing animal welfare concerns. This paper reflects the consensus of subject matter experts, professional, and scientific societies who have authored and signed on to this statement. The signatories encourage ECHA to adopt a revised science-driven approach to the dose selection criteria that strikes a balance between regulatory vigilance and scientific pragmatism.


Subject(s)
Dose-Response Relationship, Drug , Reproduction , Toxicity Tests , Animals , Reproduction/drug effects , Toxicity Tests/methods , Toxicity Tests/standards , Humans , Organisation for Economic Co-Operation and Development , Animal Welfare , Female , Risk Assessment , Guidelines as Topic , Hazardous Substances/toxicity
2.
Regul Toxicol Pharmacol ; 122: 104897, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33639256

ABSTRACT

Benzoic acid (BA) was administered in the diet to male and female Sprague Dawley Crl:CD(SD) rats in an OECD Test Guideline 443 Extended One-Generation Reproductive Toxicity (EOGRT) study to test for effects that may occur as a result of pre- and postnatal exposure. The study included cohorts of F1 offspring to evaluate potential effects of benzoic acid on reproduction, the developing immune system, and the developing neurological system with the inclusion of learning and memory assessments. Benzoic acid was incorporated in the diet at concentrations of 0, 7,500, 11,500, and 15,000 mg/kg diet (ppm). These concentrations were selected based on the results of preliminary studies, and, based on average food consumption, were intended to supply BA doses of approximately 0, 500, 750, and 1000 mg/kg bw/day. To avoid exceeding these target dose levels, the dietary concentrations were adjusted (based on historical control body weight and food consumption data) to maintain the target mg/kg bw/day dose levels during those life periods when food intake per unit of body weight was increased to support milk production by females (gestation and lactation) and rapid pup growth (post-weaning). In the parental (F0) generation, survival, clinical observations, organ weights, pathology, hematology, serum chemistry, urinalysis, and bile acids were unaffected by BA administration. Reproductive parameters were also unaffected by BA administration. In the F1 generation, survival, growth and developmental landmarks, organ weights, pathology, immunotoxicity assessment, and neurotoxicity and neurobehavioral parameters such as auditory startle response, locomotor activity, learning and memory assessments were unaffected by BA administration, as were clinical pathology (hematology, serum chemistry, urinalysis, bile acids and thyroid hormones) and reproductive performance. Similarly, no adverse effects or systemic toxicity were observed in the F2 generation. Overall, the highest dietary concentration (15,000 ppm), providing a dosage of approximately 1000 mg/kg bw/day, was the NOAEL for benzoic acid in this EOGRT study.


Subject(s)
Benzoic Acid/pharmacology , Food Preservatives/pharmacology , Genitalia/drug effects , Animals , Body Weight , Dose-Response Relationship, Drug , Female , Male , No-Observed-Adverse-Effect Level , Organ Size/drug effects , Rats , Rats, Sprague-Dawley
4.
Birth Defects Res ; 111(16): 1217-1233, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31197966

ABSTRACT

BACKGROUND: Trichloroethylene (TCE) was negative for developmental toxicity after inhalation and oral gavage exposure of pregnant rats but fetal cardiac defects were reported following drinking water exposure throughout gestation. Because of the deficiencies in this latter study, we performed another drinking water study to evaluate whether TCE causes heart defects. METHODS: Groups of 25 mated Sprague Dawley rats consumed water containing 0, 0.25, 1.5, 500, or 1,000 ppm TCE from gestational day 1-21. TCE concentrations were measured at daily formulation, when placed into water bottles each day and when water bottles were removed from cages. Four additional mated rats per group were used for plasma measurements. At termination, fetal hearts were carefully dissected fresh and examined. RESULTS: All TCE concentrations were >90% of target when initially placed in water bottles and when bottles were placed on cages. All dams survived with no clinical signs. Rats in the two higher dose groups consumed less water/day than other groups but showed no changes in maternal or fetal weights. The only fetal cardiac observation was small (<1 mm) membranous ventricular septal defect occurring in all treated and water control groups; incidences were within the range of published findings for naive animals. TCE was not detected in maternal blood, but systemic exposure was confirmed by detecting its primary oxidative metabolite, trichloroacetic acid, although only at levels above the quantitation limit in the two higher dose groups. CONCLUSIONS: Ingesting TCE in drinking water ≤1,000 ppm throughout gestation does not cause cardiac defects in rat offspring.


Subject(s)
Heart Defects, Congenital/etiology , Trichloroethylene/adverse effects , Trichloroethylene/pharmacology , Animals , Drinking Water , Female , Fetal Heart/drug effects , Fetal Weight/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley , Reproduction/drug effects , Trichloroacetic Acid/metabolism , Trichloroacetic Acid/pharmacology , Trichloroethylene/metabolism
5.
Arch Toxicol ; 93(4): 1157-1167, 2019 04.
Article in English | MEDLINE | ID: mdl-30929029

ABSTRACT

This publication summarizes discussions that were held during an international expert hearing organized by the German Federal Institute for Risk Assessment (BfR) in Berlin, Germany, in October 2017. The expert hearing was dedicated to providing practical guidance for the measurement of circulating hormones in regulatory toxicology studies. Adequate measurements of circulating hormones have become more important given the regulatory requirement to assess the potential for endocrine disrupting properties for all substances covered by the plant protection products and biocidal products regulations in the European Union (EU). The main focus was the hypothalamus-pituitary-thyroid axis (HPT) and the hypothalamus-pituitary-gonadal axis (HPG). Insulin, insulin-like growth factor 1 (IGF-1), parathyroid hormone (PTH) and vitamins A and D were also discussed. During the hearing, the experts agreed on specific recommendations for design, conduct and evaluation of acceptability of studies measuring thyroid hormones, thyroid stimulating hormone and reproductive hormones as well as provided some recommendations for insulin and IGF-1. Experts concluded that hormonal measurements as part of the test guidelines (TGs) of the Organisation for Economic Co-operation and Development (OECD) were necessary on the condition that quality criteria to guarantee reliability and reproducibility of measurements are adhered to. Inclusion of the female reproductive hormones in OECD TGs was not recommended unless the design of the study was modified to appropriately measure hormone concentrations. The current report aims at promoting standardization of the experimental designs of hormonal assays to allow their integration in OECD TGs and highlights research needs for better identification of endocrine disruptors using hormone measurements.


Subject(s)
Endocrine Disruptors/toxicity , Endocrine System/drug effects , Hormones/blood , Research Design/standards , Toxicology/standards , Animals , Biological Assay , Endpoint Determination , European Union , Guidelines as Topic , Toxicology/methods
6.
Regul Toxicol Pharmacol ; 106: 111-136, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31018155

ABSTRACT

Thyroid hormones (THs; T3 and T4) play a role in development of cardiovascular, reproductive, immune and nervous systems. Thus, interpretation of TH changes from rodent studies (during pregnancy, in fetuses, neonates, and adults) is critical in hazard characterization and risk assessment. A roundtable session at the 2017 Society of Toxicology (SOT) meeting brought together academic, industry and government scientists to share knowledge and different perspectives on technical and data interpretation issues. Data from a limited group of laboratories were compiled for technical discussions on TH measurements, including good practices for reliable serum TH data. Inter-laboratory historical control data, derived from immunoassays or mass spectrometry methods, revealed: 1) assay sensitivities vary within and across methodologies; 2) TH variability is similar across animal ages; 3) laboratories generally achieve sufficiently sensitive TH quantitation levels, although issues remain for lower levels of serum TH and TSH in fetuses and postnatal day 4 pups; thus, assay sensitivity is critical at these life stages. Best practices require detailed validation of rat serum TH measurements across ages to establish assay sensitivity and precision, and identify potential matrix effects. Finally, issues related to data interpretation for biological understanding and risk assessment were discussed, but their resolution remains elusive.


Subject(s)
Thyroid Gland/drug effects , Thyroxine/adverse effects , Triiodothyronine/adverse effects , Animals , Humans , Immunoassay , Mass Spectrometry , Risk Assessment , Thyroxine/administration & dosage , Triiodothyronine/administration & dosage
7.
Reprod Toxicol ; 78: 150-168, 2018 06.
Article in English | MEDLINE | ID: mdl-29694846

ABSTRACT

Potassium perfluorohexanesulfonate (K+PFHxS) was evaluated for reproductive/developmental toxicity in CD-1 mice. Up to 3 mg/kg-d K+PFHxS was administered (n = 30/sex/group) before mating, for at least 42 days in F0 males, and for F0 females, through gestation and lactation. F1 pups were directly dosed with K+PFHxS for 14 days after weaning. There was an equivocal decrease in live litter size at 1 and 3 mg/kg-d, but the pup-born-to-implant ratio was unaffected. Adaptive hepatocellular hypertrophy was observed, and in 3 mg/kg-d F0 males, it was accompanied by concomitant decreased serum cholesterol and increased alkaline phosphatase. There were no other toxicologically significant findings on reproductive parameters, hematology/clinical pathology/TSH, neurobehavioral effects, or histopathology. There were no treatment-related effects on postnatal survival, development, or onset of preputial separation or vaginal opening in F1 mice. Consistent with previous studies, our data suggest that the potency of PFHxS is much lower than PFOS in rodents.


Subject(s)
Prenatal Exposure Delayed Effects , Sulfonic Acids/toxicity , Alkaline Phosphatase/blood , Animals , Cholesterol/blood , Female , Fluorocarbons , Hepatocytes/drug effects , Hepatocytes/pathology , Male , Maternal-Fetal Exchange , Mice, Inbred ICR , Pregnancy
8.
Birth Defects Res ; 110(10): 840-850, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29436169

ABSTRACT

BACKGROUND: Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing? METHODS: A workshop was held under the auspices of the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute to consider how we might design developmental toxicity testing if we started over with 21st century knowledge and techniques (revolution). We first consider what changes to the current protocols might be recommended to make them more predictive for human risk (evolution). RESULTS: The evolutionary approach includes modifications of existing protocols and can include humanized models, disease models, more accurate assessment and testing of metabolites, and informed approaches to dose selection. The revolution could start with hypothesis-driven testing where we take what we know about a compound or close analog and answer specific questions using targeted experimental techniques rather than a one-protocol-fits-all approach. Central to the idea of hypothesis-driven testing is the concept that testing can be done at the level of mode of action. It might be feasible to identify a small number of key events at a molecular or cellular level that predict an adverse outcome and for which testing could be performed in vitro or in silico or, rarely, using limited in vivo models. Techniques for evaluating these key events exist today or are in development. DISCUSSION: Opportunities exist for refining and then replacing current developmental toxicity testing protocols using techniques that have already been developed or are within reach.


Subject(s)
Embryonic Development/physiology , Fetal Development/physiology , Toxicity Tests/methods , Animals , Female , Humans , Pregnancy , Risk Assessment
9.
Xenobiotica ; 48(9): 867-881, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28882082

ABSTRACT

1. To determine the effects of repeated atrazine (ATR) treatment on hepatic phase I and II enzymes, adult female rats were treated with vehicle or 100 mg/kg of ATR for 1, 2, 3 or 4 days. Glutathione-s-transferases (GST) mRNA expression, protein levels (mu, pi, alpha, omega), and activity (cytosolic and microsomal), along with bioavailable glutathione (GSH) were assayed. 2. GST expression, concentrations and activity were increased, along with GSH levels, in animals treated with ATR for 3 and 4 days. 3. A subsequent study was performed with animals treated with vehicle, 6.5, 50 or 100 mg/kg/day for 4, 8 or 14 days. Expression of hepatic phase I CYP 450 enzymes was evaluated in conjugation with GST expression, protein and activity. Nineteen of the 45 CYP enzymes assayed displayed increased mRNA levels after eight days of treatment in animals treated with 50 or 100 mg/kg/day. After 14 days of treatment, all CYP expression levels returned to control levels except for CYP2B2, CYP2B3, CYP2C7, CYP2C23, CYP2E1, CYP3A9, CYP4A3 and CYP27A1, which remained elevated. 4. Results indicate that there may be a habituation or adaptation of liver phase I and phase II expression following repeated ATR treatment.


Subject(s)
Atrazine/toxicity , Enzymes/metabolism , Inactivation, Metabolic/drug effects , Inactivation, Metabolic/physiology , Liver/drug effects , Animals , Atrazine/administration & dosage , Cytochrome P-450 CYP2J2 , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Enzymes/genetics , Female , Gene Expression Regulation, Enzymologic , Glutathione/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Liver/metabolism , Rats, Sprague-Dawley
10.
Birth Defects Res ; 110(3): 246-258, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29134775

ABSTRACT

BACKGROUND: Atrazine suppression of the LH surge slowly develops over time and peaks after 4 days; sensitivity to atrazine decreases after 8 or 14 days of dosing. Adaptation of the LH response was correlated with increased phase I and phase II liver enzyme activity/expression. METHODS: The effect of atrazine on the LH surge was evaluated in female Sprague-Dawley rats administered 100 mg/kg/day atrazine by gavage for 1, 2, 3, or 4 consecutive days or 6.5, 50, or 100 mg/kg/day atrazine for 4, 8, or 14 days. RESULTS: No statistically significant effects of atrazine were seen on peak plasma LH or LH area under the curve (AUC) after one, two, or three doses of 100 mg/kg/day. Four daily doses of 50 or 100 mg/kg atrazine significantly reduced peak LH and LH AUCs, whereas 6.5 mg/kg/day had no effect. After 8 or 14 days of treatment, statistically significantly reduced peak LH and LH AUC were observed in the 100 mg/kg/day dose group, but not in the 6.5 or 50 mg/kg/day dose groups, although significantly reduced LH was observed in one sample 9 hr after lights-on in the 50 mg/kg/day dose group on day 14. The number of days of treatment required to achieve a significant suppression of the LH surge is consistent with the repeat-dose pharmacokinetics of the chlorotriazines. CONCLUSION: The apparent adaptation to the effect of atrazine on the LH surge after 8 or 14 days may be related to the induction of phase I or, more likely, phase II metabolism observed in this study after 8 days, or to a decreased sensitivity of the hypothalamic-pituitary-adrenal axis or an homeostatic adaption of the effect of atrazine on the LH surge mechanism. Birth Defects Research 110:246-258, 2018. © 2017 The Authors. Birth Defects Research Published by Wiley Periodicals, Inc.


Subject(s)
Atrazine/toxicity , Gene Expression Regulation, Enzymologic/drug effects , Liver/enzymology , Luteinizing Hormone/metabolism , Animals , Female , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/pathology , Liver/pathology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/pathology , Rats , Rats, Sprague-Dawley
11.
Regul Toxicol Pharmacol ; 89: 200-214, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28736286

ABSTRACT

T cell-dependent IgM antibody production and natural killer cell (NKC) activity were assessed in SD rats orally administered atrazine for 28 days to males (0, 6.5, 25, or 100 mg/kg/day) or females (0, 3, 6, or 50 mg/kg/day), or 30 or 500 ppm in diet (3 or 51 mg/kg/day). Anti-asialo GM1 antibodies (NKC) and cyclophosphamide (antibody-forming cell assay [AFC]) served as positive controls. Pituitary (ACTH, prolactin), adrenal (corticosterone, progesterone, aldosterone), and gonadal (androgens, estrogens) hormones were assessed after 1, 7, and/or 28 days of treatment. Food intake and body weights were significantly reduced in the highest dosed males, and transiently affected in females. Urinary corticosterone levels were not increased in atrazine-treated groups in either sex at any time point measured (10, 22, or 24 days). Corticosterone and progesterone were elevated in males after a single atrazine dose ≥6.5 mg/kg/day, but not after 7, 14, or 28 doses. There were no effects on adrenal, pituitary, or gonadal hormones in females. Atrazine did not suppress the AFC response or decrease NKC function after 28 days in males or females. Atrazine had no effect on spleen weights or spleen cell numbers in males or females, although thymus weights were elevated in males receiving the highest dose. The lack of immunotoxic effect of atrazine was associated with diminished adrenal activation over time in males, and no effects on adrenal hormones in females.


Subject(s)
Adrenal Glands/drug effects , Atrazine/toxicity , Herbicides/toxicity , Immunoglobulin M/metabolism , Killer Cells, Natural/drug effects , T-Lymphocytes/drug effects , Adrenal Glands/immunology , Adrenal Glands/metabolism , Animals , Atrazine/administration & dosage , Atrazine/immunology , Female , Herbicides/administration & dosage , Herbicides/immunology , Killer Cells, Natural/immunology , Male , Pituitary Gland/drug effects , Pituitary Gland/immunology , Pituitary Gland/metabolism , Rats , Rats, Sprague-Dawley , Sex Factors , T-Lymphocytes/immunology
12.
Birth Defects Res B Dev Reprod Toxicol ; 104(5): 204-17, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26439775

ABSTRACT

Atrazine (ATZ) was administered daily by gavage to pregnant female Sprague Dawley rats at doses of 0, 6.25, 25 or 50 mg/kg/day, either during gestation, lactation and post-weaning (G/L/PW cohort) to F1 generation female offspring or only from postnatal day (PND 21) until five days after sexual maturation (vaginal opening) when the estrogen-primed, luteinizing hormone (LH) surge was evaluated (PW cohort). Additional subgroups of F1 females received the vehicle or ATZ from PND 21-133 or from PND 120-133. Slight reductions in fertility and the percentage of F1 generation pups surviving to PND 21 in the gestationally exposed 50 mg/kg dose group were accompanied by decreased food intake and body weight of dams and F1 generation offspring. The onset of puberty was delayed in of the F1 generation G/L/PW females at doses of 25 and 50 mg/kg/day. F1 generation females in the PW high-dose ATZ group also experienced a delay in the onset of puberty. ATZ had no effect on peak LH or LH AUC in ovariectomized rats 5 days after sexual maturation, irrespective of whether the F1 generation females were treated from gestation onward or only peripubertally. There was no effect of ATZ treatment on the estrous cycle, peak LH or LH AUC of F1 generation females exposed from gestation through to PND 133 or only for two weeks from PND 120-133. These results indicate that developing females exposed to ATZ are not more sensitive compared to animals exposed to ATZ as young adults.


Subject(s)
Aging/drug effects , Atrazine/toxicity , Environmental Exposure , Luteinizing Hormone/metabolism , Sexual Maturation/drug effects , Animals , Body Weight/drug effects , Crosses, Genetic , Estradiol/pharmacology , Estrous Cycle/drug effects , Feeding Behavior/drug effects , Female , Rats , Rats, Sprague-Dawley , Survival Analysis , Time Factors
13.
Birth Defects Res B Dev Reprod Toxicol ; 101(3): 262-75, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24831581

ABSTRACT

Atrazine (ATR) blunts the hormone-induced luteinizing hormone (LH) surge, when administered by gavage (50-100 mg/kg/day for 4 days), in ovariectomized rats. In this study, we determined if comparable doses delivered either by gavage (bolus dose) or distributed in diet would reduce the LH surge and subsequently affect fertility in the intact female rat. ATR was administered daily to intact female Sprague-Dawley (SD) or Long Evans (LE) rats by gavage (0, 0.75 1.5, 3, 6, 10, 12, 50, or 100 mg/kg/day) or diet (0, 30, 100, 160, 500, 660, or 1460 ppm) during one complete 4-day estrous cycle, starting on day of estrus. Estrous status, corpora lutea, ova, and LH plasma concentrations were evaluated. A second cohort of animals was mated on the fourth treatment day. Fertility metrics were assessed on gestational day 20. A higher portion of LE rats had asynchronous estrous cycles when compared to SD rats both during pretreatment and in response to ATR (≥50 mg/kg). In contrast, bolus doses of ATR (≥50 mg/kg) inhibited the peak and area under the curve for the preovulatory LH surge in SD but not LE animals. Likewise, only bolus-treated SD, not LE, rats displayed reduced mean number of corpora lutea and ova. There were no effects of ATR administered by gavage on mating, gravid number, or fetus number. Dietary administration had no effect on any reproductive parameter measured. These findings indicate that short duration, high-bolus doses of ATR can inhibit the LH surge and reduce the number of follicles ovulated; however, dietary administration has no effect on any endocrine or reproductive outcomes.


Subject(s)
Atrazine/toxicity , Luteinizing Hormone/blood , Reproduction/drug effects , Animals , Atrazine/administration & dosage , Atrazine/blood , Diet , Dose-Response Relationship, Drug , Estrous Cycle/drug effects , Female , Herbicides/administration & dosage , Herbicides/toxicity , Rats , Rats, Long-Evans , Rats, Sprague-Dawley
14.
Regul Toxicol Pharmacol ; 68(3): 332-42, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24486531

ABSTRACT

Tertiary-butyl acetate (TBAC) was tested for subchronic toxicity in rats and mice and reproductive toxicity in rats at inhalation concentrations of 0, 100, 400 or 1600ppm. An oral maternal toxicity study was conducted in rats at dose levels of 0, 400, 800, 1000 and 1600mgkg(-1)d(-1). In the inhalation studies, hematology, clinical chemistry, urinalysis, gross pathology and the majority of body weight and feed consumption values were unaffected. Exposure to TBAC at concentrations of 400ppm and higher caused transient hyperactivity in mice and some evidence of increased motor activity counts in male rats at the 1600ppm exposure level. TBAC caused α2u-globulin accumulation in male rat kidneys from all exposure groups and increased liver weights in 1600ppm rats and mice. Levels of thyroxin were decreased in male mice exposed to 1600ppm TBAC for 4weeks but otherwise thyroid endpoints were unaffected in rats and mice at either the 4 or 13weeks time points. There was no evidence or immunotoxicity or reproductive toxicity in rats. Pregnant rats receiving 1000mgkg(-1)d(-1) TBAC exhibited severe signs of acute neurotoxicity and decreased feed consumption and body weight gain. Fetal viability and growth were unaffected.


Subject(s)
Acetates/toxicity , Solvents/toxicity , Adrenal Glands/anatomy & histology , Adrenal Glands/drug effects , Alpha-Globulins/metabolism , Animals , Female , Kidney/anatomy & histology , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/pathology , Male , Maternal-Fetal Exchange , Mice , Motor Activity/drug effects , Neurotoxicity Syndromes/etiology , Organ Size/drug effects , Pregnancy , Rats , Reproduction/drug effects , Thyroxine/blood , Toxicity Tests, Subchronic
15.
Toxicol Sci ; 119(2): 380-90, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21059795

ABSTRACT

In this study, we quantified the effects of in utero exposure to the herbicide atrazine on subsequent mammary gland development. Atrazine was administered to pregnant female Long Evans rats from gestation days 13-19 at doses of 0, 6.5, 50, or 100 mg/kg/day. A pair-fed control group was yoked to the high-dose atrazine-treated group. Litter size was standardized to 10 pups on postnatal day (PND) 4. Whole mounts of the left fourth mammary gland and histologic sections of the right fourth gland were obtained from a subgroup of offspring on PND1, 21, 33, on day of vaginal opening (VO), or around PND65 at diestrus. A blinded, quantitative analysis of key morphological features in mammary gland whole mounts (ductal elongation, ductal network area, epithelial area, terminal end bud [TEB] incidence, and epithelial density) as well as epithelial proliferation within different parenchymal structures was conducted. There was no effect of atrazine exposure on any of the measures of mammary gland development at the maternal dose of 6.5 mg/kg/day. On PND1, ductal elongation was increased by approximately 20% (p < 0.05) in the female offspring born to dams exposed to 50 and 100 mg/kg/day atrazine, coincident with decreased epithelial proliferation in the 100 mg/kg/day group at this age. These differences were not present on PND21, or thereafter. An increased incidence of TEB in the mammary glands from females that were born to both the pair-fed and 50 mg/kg/day-treated dams at the time of VO indicated that this response was a specific result of maternal caloric restriction. Collectively, these data indicate that maternal atrazine exposure has no long-term effects on mammary gland development in female offspring beyond a transitory response to high doses at PND1.


Subject(s)
Atrazine/toxicity , Mammary Glands, Animal/drug effects , Prenatal Exposure Delayed Effects , Animals , Dose-Response Relationship, Drug , Female , Mammary Glands, Animal/growth & development , Pregnancy , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...