Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38721903

ABSTRACT

We present a technique for measuring the interactions between pairs of colloidal particles in two optical traps. This method is particularly suitable for measuring strongly attractive potentials, an otherwise challenging task. The interaction energy is calculated from the distribution of inter-particle separations by accounting for the contribution from the optical traps with arbitrary trap profiles. The method is simple to implement and applicable to different types of pair potentials and optical trapping geometries. We apply the method to measure dipolar pair interactions in experiments with paramagnetic colloids in external magnetic fields. We obtain consistent and accurate results in all regimes, from strongly attractive to repulsive potentials. By means of computer simulations, we demonstrate that the proposed method can be successfully applied to systems with complex pair interactions characterized by multiple attractive and repulsive regimes, which are ubiquitous in soft and biological matter.

2.
JMIR Hum Factors ; 10: e47390, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37801353

ABSTRACT

BACKGROUND: The high failure rate of innovation projects motivates us to understand the perceptions about resistances and barriers of the main stakeholders to improving success rates. OBJECTIVE: This study aims to analyze the readiness for change in the implementation of a 3D printing project in a Catalan tertiary hospital prior to its implementation. METHODS: We used a web-based, voluntary, and anonymous survey using the Normalization Measurement Development questionnaire (NoMAD) to gather views and perceptions from a selected group of health care professionals at Germans Trias i Pujol University Hospital. RESULTS: In this study, 58 professionals, including heads of service (n=30, 51%), doctors (n=18, 31%), nurses (n=7, 12%), and support staff (n=3, 5%), responded to the questionnaire. All groups saw the value of the project and were willing to enroll and support it. Respondents reported the highest scores (out of 5) in cognitive participation (mean 4.45, SD 0.04), coherence (mean 3.72, SD 0.13), and reflective monitoring (mean 3.80, SD 0.25). The weakest score was in collective action (mean 3.52, SD 0.12). There were no statistically significant differences in scores among professions in the survey. CONCLUSIONS: The 3D printing project implementation should pay attention to preparing, defining, sharing, and supporting the operational work involved in its use and implementation. It should also understand, assess, and communicate the ways in which the new set of practices can affect the users and others around them. We suggest that health officers and politicians consider this experience as a solid ground toward the development of a more efficient health innovation system and as a catalyst for transformation.


Subject(s)
Attitude of Health Personnel , Physicians , Humans , Tertiary Care Centers , Surveys and Questionnaires , Health Personnel
3.
Phys Rev Lett ; 128(21): 218001, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35687474

ABSTRACT

We show that arbitrarily large polar flocks are susceptible to the presence of a single small obstacle. In a wide region of parameter space, the obstacle triggers counterpropagating dense bands leading to reversals of the flow. In very large systems, these bands interact, yielding a never-ending chaotic dynamics that constitutes a new disordered phase of the system. While most of these results were obtained using simulations of aligning self-propelled particles, we find similar phenomena at the continuous level, not when considering the basic Toner-Tu hydrodynamic theory, but in simulations of truncations of the relevant Boltzmann equation.

4.
Soft Matter ; 18(29): 5371-5379, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35762424

ABSTRACT

Artificial active particles are autonomous agents able to convert energy from the environment into net propulsion, breaking detailed balance and the action-reaction law, clear signatures of their out-of-equilibrium nature. Here we investigate the emergence of directed motion in clusters composed of passive and catalytically active apolar colloids. We use a light-induced chemophoretic flow to rapidly assemble hybrid self-propelling clusters composed of hematite particles and passive silica spheres. By increasing the size of the passive cargo, we observe a reversal in the transport direction of the pair. We explain this complex yet rich phenomenon using a theoretical model which accounts for the generated chemical field and its coupling with the surrounding medium. We exploit further our technique to build up more complex, chemically driven, architectures capable of carrying several passive or active species, that quickly assemble and disassemble under light control.

5.
J Colloid Interface Sci ; 560: 388-397, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31672244

ABSTRACT

HYPOTHESIS: Field induced assembling/disassembling of paramagnetic colloids is strongly influenced by the configuration of the applied field, the surface chemistry of the particles, the nearby presence of an external boundary or the particle density. The trapping of the particles at fluid-fluid interface is expected to promote different assembling/disassembling routes together with new approaches for controlled manipulation of self-assembled structures and the fabrication of new functional patterned surfaces. EXPERIMENTS: We study the reversible disassembly itineraries that emerge in linear aggregates of micrometer-sized magnetic particles adsorbed onto a fluid interface when the applied field is abruptly tilted out of the confining surface: the unzipping of chains laterally aggregated, the partial fragmentation of the chains, the gradual separation of the monomers and the abrupt colloidal explosion. FINDINGS: By combining experiments, simulations and theoretical arguments, we elucidate different dissociation mechanisms strongly influenced by subtle changes in the orientation of the applied field, the particle's position relative to the confining interface and the mutual induction of the particles. Moreover, we show that the understanding of the mechanisms can be applied to pinpoint exactly particle detachments in two-dimensional binary mixtures.

6.
J Chem Phys ; 151(16): 164903, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31675898

ABSTRACT

We use a computational model to investigate the emergence of interaction forces between pairs of intruders in a horizontally vibrated granular fluid. The time evolution of a pair of particles shows a maximum of the likelihood to find the pair at contact in the direction of shaking. This relative interaction is further studied by fixing the intruders in the simulation box where we identify effective mechanical forces and torques between particles and quantify an emergent long range attractive force as a function of the shaking relative angle, the amplitude, and the packing density of grains. We determine the local density and kinetic energy profiles of granular particles along the axis of the dimer to find no gradients in the density fields and additive gradients in the kinetic energies.

7.
Proc Natl Acad Sci U S A ; 115(42): 10618-10623, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30275338

ABSTRACT

Collections of interacting active particles, self-propelling or not, have shown remarkable phenomena including the emergence of dynamic patterns across different length scales, from animal groups to vibrated grains, microtubules, bacteria, and chemical- or field-driven colloids. Burgeoning experimental and simulation activities are now exploring the possibility of realizing solid and stable structures from passive elements that are assembled by a few active dopants. Here we show that such an elusive task may be accomplished by using a small amount of apolar dopants, namely synthetic active but not self-propelling units. We use blue light to rapidly assemble 2D colloidal clusters and gels via nonequilibrium diffusiophoresis, where microscopic hematite dockers form long-living interstitial bonds that strongly glue passive silica microspheres. By varying the relative fraction of doping, we uncover a rich phase diagram including ordered and disordered clusters, space-filling gels, and bicontinuous structures formed by filamentary dockers percolating through a solid network of silica spheres. We characterize the slow relaxation and dynamic arrest of the different phases via correlation and scattering functions. Our findings provide a pathway toward the rapid engineering of mesoscopic gels and clusters via active colloidal doping.

8.
Soft Matter ; 13(44): 8113-8119, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29105717

ABSTRACT

As a result of the competition between self-propulsion and excluded volume interactions, purely repulsive self-propelled spherical particles undergo a motility-induced phase separation (MIPS). We carry out a systematic computational study, considering several interaction potentials, systems confined by hard walls or with periodic boundary conditions, and different initial conditions. This approach allows us to identify that, despite its non-equilibrium nature, the equations of state of Active Brownian Particles (ABP) across MIPS verify the characteristic properties of first-order liquid-gas phase transitions, meaning, equality of pressure of the coexisting phases once a nucleation barrier has been overcome and, in the opposite case, hysteresis around the transition as long as the system remains in the metastable region. Our results show that the equations of state of ABPs account for their phase behaviour, providing a firm basis to describe MIPS as an equilibrium-like phase transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...